
Lecture Notes:

FIE on Firmware: Finding Vulnerabilities in

Embedded Systems using Symbolic Execution

Rui Zhang

March 6, 2017

1 Embedded microprocessors, Firmware

Typical low-power embedded systems combine a software-driven microprocessor,
together with peripherals such as sensors, controllers, etc.

Firmware: The software on such devices is referred to as firmware, and it is
most often written in C.

2 Motivation

To improve firmware security:

1. Source-code analysis tools: insufficient for analyzing firmware

(a) e.g. the microcontrollers used in practice have a wide range of archi-
tectures

(b) firmware exhibits characteristics dissimilar to traditional programs:
frequent interrupt-driven control flow and continuous interaction with
peripherals

2. Fuzzing and reverse engineering: requires significant manual effort and
knowledge of the firmware under analysis

3 Background

3.1 MSP430 Microcontrollers

1. used in security critical applications such as credit-card point of sale sys-
tems, smoke detectors, motion detectors, seismic sensors, etc.

2. RISC instruction set, von Neumann architecture, 16-bit addressing

3. Built-in peripherals: flash memory, timers, power management interfaces,
etc.

4. External peripherals: USB hardware, modems, sensors, etc.

1



5. Operates by setting up configuration for the program, spinning in an in-
finite loop while waiting for input from the environment

6. These event-driven programs use interrupt handlers, busy waiting, and the
like to drive computation in response to I/O from peripherals. Interrupt
handlers often contain the bulk of the program logic.

7. A typical firmware will initialize several registers specifying which inter-
rupts to activate and then go to sleep either by setting the chip to a
low-power sleep mode or by entering an explicit infinite loop.

3.2 Firmware Corpus

1. Cardreader: gets as input card data from the stripe reader, loads a stored
cryptographic key from flash memory, applies AES encryption to the card
data before writing the result to the UART.

2. USB drivers: CDC Driver and HID Driver.

3. Community projects and GitHub: 83 firmware programs

4. Contiki: provides an operating system for microcontrollers.

3.3 Symbolic Execution Challenges

1. Architecture ambiguity: Firmware programs make a number of assump-
tions about the hardware: the overall layout of memory and location of
memory-mapped hardware controls. These assumptions are not made ex-
plicit in a firmware’s source code.

2. Intensive I/O: Need to support analysis without peripherals and often
without knowing the intended peripheral. Need to support the detection
of peripheral misuse bugs, when a peripheral and its behavior are known.

3. Event-driven programming: Deep or infinite loops are frequent, and most
programs logic happens in interrupt handlers. Failure to follow possible
control flow paths through interrupt handlers will result in very low cov-
erage results.

4 Overview of FIE

1. Threat model: all inputs from peripherals are untrusted.

2. Target: to achieve complete analyses for simple firmware programs.

3. FIE frontend: Three necessary features that CLANG alone does not pro-
vide:

(a) definitions for compiler intrinsics that are not expanded by CLANG

(b) definitions of standard library functions that would normally be in-
cluded at linke time

(c) definitions of hardware-defined behavior

2



Handling (1) and (2): provide a wrapper around CLANG which links pre-
compiled bitcode for functions in stdlib and for compiler intrinsics. For
(3): it is often unknown at compile time, address this at runtime using an
analysis specification

4. Core execution engine:

(a) Memory spec: supplies the semantics of special memory such as at-
tached devices, flash memory. FIE comes with a set of default specifi-
cations, conservatively returns unconstrained symbolic values to any
read and ignores write.

(b) Interrupt spec: informs the analysis of when and which interrupts
should be simulated to have fired at any given point in symbolic
execution.

(c) Runs a modified version of KLEE:

i. major changes: a new memory manager to ensure that all mem-
ory objects are allocate within a 16-bit value, the use of memory
spec and library.

ii. enhancements: state pruning, memory smudging

5 Details of FIE’s Architecture

5.1 Main Execution Loop

1. Execution state: an immutable snapshot of the symbolic execution at a
given point in time. Includes: all values used to emulate LLVM bitcode,
a program counter, stack frames, global memory.

2. Pseudocode

5.2 Modeling Chips and Peripherals

1. Analysis specification

(a) A plaintext file adhering to a simple format and specifying how the
analysis should be configured.

(b) The layout file can be synthesized automatically from firmware source
code and files included in the compiler.

(c) The chip layout specification explicitly fixes architecture details that
are implicit in firmware, but it does not specify the actual behavior
of these special features.

2. Memory spec

(a) FIE uses a library of functions that form a model of special memory
behavior.

(b) Read and write functions are passed the entire symbolic execution
state, and output a set of states.

(c) FIE provide a default memory spec which is automatically generated
from the analysis spec.

3



3. Interrupt spec

(a) Determining the enabled set of interrupts requires knowledge of the
architecture and the current firmware state.

i. the MSP430 design documents specify a partial order of priorities
over interrupts

ii. some interrupts are only enabled when appropriate status regis-
ter flags are set

(b) The interrupt spec contains a number of gate functions, one for each
possible interrupt that can occur on an MSP430.

5.3 State Pruning

1. Redundant states: if one state will execute equivalently to another already
seen state, we call this state redundant.

2. PLAIN: if all successors generated via interrupt spawning or evaluation
are simply added to the set of active states, we refer to this variant as the
PLAIN operating mode of FIE.

3. Redundant states arise frequently and PLAIN is slowed down considerably
by them.

4. One source of redundant state: interrupt firings can lead to two different
paths leading to the same state.

5. A second source of redundant states: symbolic execution of loops generates
redundant states.

6. Prior systems deals with redundant states by state selection heuristics that
favored new lines of code.

7. FIE detect and prune redundant states.

5.4 Memory Smudging

1. At analysis time, the analyst supplies a modification threshold t to FIE.

2. Before adding a successor state to the set, the function MemorySmudge
checks if any memory locations have been modified t times.

3. If so, the location’s value is replaced by a special value *.

4. This wildcard value may take any value allowed by the type and cannot
be constrained.

6 Evaluation

1. Firmware size and coverage

(a) Firmware size: the number of executable LLVM instructions (NEXI)

i. compile the firmware into LLVM bitcode using CLANG

4



ii. run LLVM optimization passes

iii. take the number of LLVM instructions in the resulting bitcode

(b) Code coverage: the fraction of LLVM instructions executed in the
course of the analysis divided by the NEXI of the target firmware

2. Coverage under different FIE modes

(a) Baseline: for most firmware, the Baseline analysis performs very
poorly, with a median of 1.7% coverage.

(b) Fuzz: this mode takes advantage of knowledge of the memory layout,
special registers, and interrupt handling semantics. Fuzzing provides
surprisingly good coverage for many of the firmware programs, in
fact beating symbolic execution modes in many cases.

(c) Plain, Prune, and Smudge: Smudge provides better coverage than
all others, including Fuzz.

3. 50-minute analysis outcomes

(a) FIE can either stop because it runs out of memory, the requested
amount of execution time has been reached, or there exist no more
active states.

(b) Pruning and smudging help reduce memory usage and increase the
number of analyses that finish.

7 Limitations

1. There exist firmware for which complete analyses are intractable, and
soundness is only with respect to the symbolic execution framework.

2. There exist various sources of imprecision in analysis that may lead to
false positives or false negatives.

(a) Bugs in the analysis software or misconfiguration.

(b) Discrepancies between the firmware as symbolically executed in FIE
and natively in deployment.

(c) The most conservative analysis models peripherals and interrupt fir-
ing as adversarially controlled.

3. FIE fails execution paths that include inline assembly.

5


