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1 Finding Exploitable Bugs

1.1 Main Challenge in Exploit Generation

Exploring enough of the state space of an application to find exploitable paths.

1.2 Four main principles

1. make forward progress for arbitrarily long times

2. should not repeat work

3. should not throw away any work

4. reason about symbolic memory

1.3 Key points for finding exploitable bugs

1. Low-level details matter (like return addresses, stack pointers, motivation
for focusing on binary-level techniques)

2. Enormous number of paths (if statement, long input)

3. The more checked paths, the better

4. Execute as much natively as possible

2 Background

2.1 Offline symbolic execution

1. Reason about a single execution path at a time

2. Satisfy principle 1: iteratively picking new paths to explore

3. Satisfy principle 3: every run is independent and can be immediately
reused

4. Does not satisfy 2: every run needs to restart execution from the very
beginning
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5. Drawback: for every explored execution path, we need to first re-execute
a very large number of instructions until we reach the symbolic condition
where execution forked, and then begin to explore new instructions

2.2 Online executors

1. Execute all possible paths in a single run of the system

2. Forks at each branch point, previous instructions never re-executed

3. Principle 1 and 3 are not met, interesting paths are potentially eliminated

4. Drawback: quickly strain the memory, causing the entire system to grind
to a halt

2.3 Symbolic Index Modeling

1. A symbolic index occurs when the index used in a memory lookup is not
a number, but an expression

2. Previous tools:

• Concretizing the index: reduce complexity, but may cause us to mis
paths, natural choice for offline executors

• Allowing memory to be fully symbolic: formulas involving symbolic
memory are more expressive, solving/exploration times are usually
higher

3 Design of MAYHEM

3.1 Combine Concrete Execution and Symbolic Execution

1. Concrete Executor Client (CEC)

• Takes in a binary program along with the potential symbolic sources
(input specification) as a input, begins communication with the SES

• Handles multiple concrete execution states simultaneously, execution
state includes current register context, memory and OS state (snap-
shot of the virtual file system, network and kernel state)

• Context switches between different concrete execution states depend-
ing on the symbolic executor

• Virtualization layer mediates all system calls to the host OS and
emulates them

2. Symbolic Executor Server (SES)

• Symbolically executes blocks that the CEC sends, outputs several
types of test cases including normal test cases, crashes, exploits

• Manages the symbolic execution environment and decides which paths
are executed by the CEC
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• Maintains two contexts: variable context (all symbolic register values
and temporaries); a memory context (keeping track of all symbolic
data in memory)

• Keep a priority queue for path selector

• Preconditioned symbolic execution: a user can give a partial specifi-
cation of the input to reduce the range of search space

• Path selection (three heuristic ranking rules, designed to prioritize
paths that are most likely to contain a bug)

– Executors exploring new code have high priority

– Executors that identify symbolic memory accesses have higher
priority

– Execution paths where symbolic instruction pointers are detected
have the highest priority

3. Steps followed by MAYHEM

(a) Specify which input sources are potentially under attacker control

(b) Initialization; CEC instruments the code and perform dynamic taint
analysis (checks if a block contains tainted instruction, where a block
is a sequence of instructions that ends with a conditional jump or a
call instruction)

(c) CEC encounters a tainted branch condition or jump target, it sus-
pends concrete execution. CEC sends the instructions to the SES,
SES determines which branches are feasible

(d) SES jits the instructions to an intermediate language, symoblically
executes the corresponding IL, maintains two types of formulas

• Path Formula: reflects the constraints to reach a particular line
of code

• Exploitability Formula: determines whether the attacker can
gain control of the instruction pointer and execute a payload

(e) When MAYHEM hits a tainted branch point, the SES queries the
SMT solver and decides whether to fork execution or not. New forks
are sent to the path selector to be prioritized, and corresponding
execution state is restored

(f) SES switches context between executors, CEC checkpoints/restores
the provided execution state and continues execution

(g) When MAYHEM detects a tainted jump instruction, it builds an
exploitability formula and queries an SMT solver

(h) The above steps are performed until an exploitable bug is found,
MAYHEM hits a user-specified maximum runtime, or all paths are
exhausted.

3.2 Hybrid Symbolic Execution

1. Instead of running in pure online or offline execution mode, MAYHEM
can alternate between modes.
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2. Crux: distribute the online execution tasks into subtasks without losing
potentially interesting

3. Overview:

• Execution alternates between online and offline symbolic execution
runs

• When memory is under pressure, the hybrid engine picks a running
executor, saves the current execution state and path formula. The
thread is restored by restoring the formula, concretely running the
program up to the previous execution state

• Efficiently reasoning about symbolic memory

• Generates exploits for several security vulnerabilities: buffer over-
flows, function pointer overwrites, format string vulnerabilities

4. Four main phases:

(a) Initialization: Starts analysis in online mode

(b) Online Exploration: Symbolically executes the program in an online
fashion, context-switching between current active execution states,
and generating test cases

(c) Checkpointing: When the system reaches a memory cap, it switches
to offline mode. It will select and generate a checkpoint for an active
executor.

(d) Checkpoint Restoration: The checkpoint manager selects a check-
point based on a ranking heuristic and restores it in memory.

5. Performance tuning:

• Independent formula

• Algebraic simplifications

• Taint analysis

3.3 Memory modeling in MAYHEM

1. 40% examples require handling symbolic memory, simple concretization
was insufficient

2. MAYHEM models memory partially

3. Memory Objects: Whenever a symbolic index is used to read memory,
MAYHEM generates a fresh memory object M that contains all values
that could be accessed by the index – M is a partial snapshot of the global
memory

4. Memory Object Bounds Resolution

(a) Worst case: require up to 232 queries to the solver

(b) Resolve the bounds of the memory region, the bounds need to be
conservative , but not continuous
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(c) Use solver to perform binary search

5. Problems

(a) Querying the solver on every symbolic memory dereference is expen-
sive

(b) Memory region may not be continuous

(c) The values within the memory object might have structure

(d) In the worst case, a symbolic index may access any possible location
in memory

6. Optimization

(a) Value Set Analysis: returns a strided interval for the given symbolic
index, then refined by the solver

(b) Refinement Cache: keeps a cache mapping intervals to potential re-
finements

(c) Lemma Cache: uses another level of caching to avoid repeatedly
querying a-equivalent formulas

(d) Index Search Trees: replaces memory object lookup expressions with
index search trees

(e) Bucketization with Linear Functions: an extra preprocessing step
before passing the object to the IST. The idea is to use the memory
object structure to combine multiple entries into a single bucket

7. Prioritized Concretization

(a) Above optimizations are only activated when the size is below a
threshold

(b) When the memory object size exceeds the threshold, MAYHEM will
concretize the index used to access it

(c) Prioritize the possible concretization values

• check if it is possible to redirect the pointer to unmapped memory

• check if it is possible to redirect the symbolic pointer to symbolic
data

4 Exploit Generation

1. MAYHEM checks two exploitable properties: a symbolic (tainted) instruc-
tion pointer (buffer overflow), and a symbolic format string (format string
attack)

2. Can generate both local and remote attacks

5 Discussion

1. Do not bypass OS defenses such as ASLR and DEP

2. Limitations: does not have models for all system/library calls; only ana-
lyze a single execution thread on every run; only executes tainted instruc-
tions
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6 Thoughts

Exploit generation is a straightforward application of symbolic execution. This
paper’s main contribution is to leverage the state-of-the-art techniques and also
provide to their own solutions to improve the performance in exploit generation.
Their efforts made the symbolic execution of real-world programs feasible.

7 Questions

Their methods seem to be tuned for buffer overflow and format string attacks.
If we need to add other types of attacks into MAYHEM, what efforts will be
involved?
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