
Lecture Notes:
Towards a Formal Foundation of Web Security

Chris Griggs
April 6th

Introduction
The fast paced evolution of the internet brings a great deal of new features, however,
these features may introduce new vulnerabilities as the specifications for the features
are complex, they make assumptions about the interactions with the rest of the internet
that may be false.

Central concepts being formalized include browsers, servers, scripts, HTTP, and DNS
as well as the way they interact

Three distinct threat models

1. Web attacker
a. Operates a malicious web site

2. Active network attacker
a. Ability to eavesdrop, block, and forge network messages + web attacker +

use browser APIs
3. Gadget attacker

a. Able to inject limited content into an honest website

Security Goals

1. New mechanisms should not violate any of the invariants that web site commonly
rely on for security

2. “Session integrity”, an attacker should not be able to cause an honest server to
undertake potentially sensitive actions

General Model
Primary idea is to focus on how an attacker can abuse web functionality that exists by
design not such things as phishing or drive by downloads

Web Concepts
The central concepts that are common to every web security mechanism

1. Non-linear time - how to model time
a. They don’t delve into branching choices i.e. if a user has an option to click

two links their model assumes both are clicked no matter what
b. The only temporal order they have is for events that have to occur in

sequence i.e. an HTTP request before an HTTP response
2. Browser - how abstract do they make the browser

a. Script Context
i. Represents all the scripts running in the browser on behalf of a

single web origin
ii. No isolation between scripts

b. Security UI
i. Browser guarantees some security properties for elements i.e. the

location bar accurately displays the URL
c. State Storage

i. Assume the browser has some persistent storage (cookie store or
pw database) and that this information can be read script context
on behalf on that origin

ii. Assume state is append only
3. Servers

a. Each web server is owned by a single principle that controls how that
server responds to network messages

b. Many-to-many relation to DNS names essential for DNS Rebinding
i. In this attack, a malicious web page causes visitors to run a

client-side script that attacks machines elsewhere on the network.
4. Network

a. Model the communication between servers and browsers

Threat Models

1. Web Attacker
a. Web Server

i. Controls at least one web server and how that servers responds to
HTTP requests

ii. Can purchase domains from trusted CA to host malicious content at
something like attacker.com/. From their main site of attacker.com

b. Network
i. Can only respond to requests
ii. Can send requests to honest servers without regard for http

protocol

c. Browser
i. Once the user visits the attacker's website the attacker can use any

browser APIs that are available to other websites
2. Network Attacker

a. All the abilities of a web attacker
b. Ability to read, control, and block the contents of all unencrypted network

i. Cannot corrupt HTTPS traffic between honest principals because
CA won’t issue them a certificate for an honest site

3. Gadget Attacker
a. All the abilities of the network attacker
b. The ability to to inject limited content into honest web sites

i. What content depends on the web application
4. User Behavior

a. The user may visit any website
b. The user does not confuse the attacker’s website with an honest website

i. Rules out phishing attacks

Security Goals

1. Security Invariants
a. There are a large number of assumptions made by existing web

applications about web security
i. Only deal with those relating to mechanisms at hand

1. I’m not sure how they identified these unless it was
experience

2. Session Integrity
a. The desire to make sure a request was generated by a trusted principal

not an attacker

Case Studies

1. Origin Header
a. Propose that browser identify the origin of HTTP requests by including an

origin header and websites use this to defend against cross-site request
forgery

b. Vulnerability
i. If an honest server sends a request to an attacker’s server, then the

attacker can redirect the request back to the honest server. The

honest server will accept the request which violates session
integrity

c. Solution
i. Naming all of the origins involved in in the redirect chain

2. Cross-Origin Resource Sharing
a. Let's web sites opt out of some of the browsers security protections. In

particular shore contents of a response with a particular origin, or let an
origin request otherwise forbidden task.

i. Requires a complex request that requires pre-flight request that
asks the servers permision

b. Vulnerability
i. A legacy server might redirect the pre-flight request to the

attacker’s server
c. Solution

i. Ignore all pre-flight requests
3. Referer Validation

a. To defend against Cross-site request forgery and cross site scripting the
web site should reject the request unless the referer header is from the
site’s origin or the request is directed at a gateway page that is vetted for
these attacks

b. Vulnerability
i. If the attacker is able to insert a hyperlink on the honest web page

that links to their server they can redirect that request back to the
honest server

c. Solution
i. Suppress all outgoing referer headers

4. HTML5 forms
a. Adds functionality to the FormElement API to generate API requests with

PUT and Delete methods. Requires the new methods to be sent to the
same origin as the form

b. Vulnerability
i. An attacker can generate a PUT request to their own website and

then redirect that request to an honest webserver, causing that
server to recieve an unexpected PUT request

1. Not sure what this does
c. Solution

i. Refuse to follow redirects of PUT or DELETE requests generated
by HTML forms

5. WebAuth

a. Vulnerability
i. Can send a link that will login the attacker on the user’s system

without revealing the attacker’s credentials
1. Not sure why this matters

