
Proof of Separability A Verification Technique for a Class of Security Kernels
Introduction

● Kernelized systems: isolate the functions essential to the system’s security inside a security
kernel.

○ Dual-Mode and Multimode Operation-OS Review: (Silberschatz, Abraham, Peter Baer
Galvin, and Greg Gagne. Operating System Concepts. 9th ed. N.p.: Wiley, n.d. Print.)

■ Two modes of operation: user mode and kernel mode
■ Mode bit - determines mode: kernel (0) or user (1)

■
■ Privileged instructions - instructions that may cause harm. Only executed in kernel

mode.
■ Privilege levels are an alternative to modes.
■ Hardware protection detects errors that violate modes.

○ Kernelized Systems Referenced in Paper
■ UCLA Secure Unix*

(https://www.computer.org/csdl/proceedings/afips/1979/5087/00/50870355.pdf)

■ KSOS
(https://www.computer.org/csdl/proceedings/afips/1979/5087/00/50870345.pdf)

○ Modern example: OSX architecture

(https://developer.apple.com/library/content/documentation/Darwin/Conceptual/KernelProgr
amming/Architecture/Architecture.html#//apple_ref/doc/uid/TP30000905-CH1g-CACDAEDC
)

■ “In OS X, however, the kernel environment contains much more than the Mach

kernel itself. The OS X kernel environment includes the Mach kernel, BSD, the I/O
Kit, file systems, and networking components. These are often referred to
collectively as the kernel. Each of these components is described briefly in the
following sections. For further details, refer to the specific component chapters or to
the reference material listed in the bibliography.”

● Proposes type of distributed system that uses a kernel called separation kernel that masks
interactions of different users on the same machine. (It still acts like a single-user machine.)

○ Each system component (user) has a virtual machine (called a regime) dedicated to it.
○ Components communicate through message passing (theoretically, but that’s not

accounted for here).
● Main goal: prove the system behaves as if it were composed of several totally separate machines

AKA “Proof of Separability”
● He defines this proof by specifying “Secure Isolation”

Specifying Secure Isolation
● Assumptions made in proof:

○ Extreme isolation: these specifications don’t allow for communication between users

https://www.computer.org/csdl/proceedings/afips/1979/5087/00/50870345.pdf
https://developer.apple.com/library/content/documentation/Darwin/Conceptual/KernelProgramming/Architecture/Architecture.html#//apple_ref/doc/uid/TP30000905-CH1g-CACDAEDC
https://developer.apple.com/library/content/documentation/Darwin/Conceptual/KernelProgramming/Architecture/Architecture.html#//apple_ref/doc/uid/TP30000905-CH1g-CACDAEDC

○ Systems must have some means of making progress
○ Must consume inputs and produce outputs
○ Inputs are presented to the system only once, right at the start
○ More than one user shares the machine

● Definitions:
○ A system or machine where:S, I, O, Nextstate, Input, Output)M = (

■ a finite, nonempty set of system states S =
■ a finite, nonempty set of inputs (includes user inputs and the “program”) I = i ∈ I
■ a finite, nonempty set of outputs O =
■ , where is the successor of state extstateN : S→ S extstate(s)N s∈ S
■ nput II : → S
■ where is the visible aspect of utput ,O : S→ O utput(s)O s ∈ S

○ The users of a system are members of a set of “colors”. (Our machine is1, , .., }C = { 2 . m
called a shared machine)C−

○ The computation of an input is an infinite sequence of the resulting states fromi∈ I
inputting . , where and ,i omputation(i) , , .., , ..C = < s0 s1 . sn . > nput(i)s0 = I extstate(s)sj+1 = N j

. j ∀ ≥ 0
○ The result of a computation, given an input , is the sequence of outputs observable toi∈ I

an observer.
esult(i) R = utput(s), Output(s), .., utput(s), ..< O o 1 . O n . >

As a “notational convenience”, the author also defines: esult(i) utput(Computation(i)).R = O
○ The extraction of an input () returns the components of some that are xtract(c,)E i i ∈ I c

-colored (belonging to some user) for some . Similarly, returns thec c∈ C xtract(c,)E o
components of some that are -colored for some o ∈ O c .c∈ C

○ A condensed sequence eliminates any consecutive repeats. (i.e.
) This is useful becauseondense(1, , , , , , ,) 1, , , , ,C 1 2 3 3 1 4 3 = 2 3 1 4 3

eliminates any repeat outputs caused by waiting for theondense(Extract(c, esult(i)))C R
system while it services other users.

○ if and only if either or the shorter of and is an initial subsequence≅YX X = Y X Y
(predecessor) of the other. This is useful because if but xtract(c,) xtract(c,),E i = E j

faces a denial of service, say andomputation(i) C esult ondense(Extract(c, esult(i)))r 1 = C R
, then but is a predecessor ofesult ondense(Extract(c, esult(j)))r 2 = C R esult = esult ,r 1 / r 2 esultr 1

so esult ,r 2 esult ≅result .r 1 2
● Precise specification of Secure Isolation:

c , i, , Extract(c,) xtract(c,) ondense(Extract(c, esult(i)))≅Condense(Extract(c, esult(j)))∀ ∈ C ∀ j∈ I i = E j ⇒ C R R
Verifying Secure Isolation

● Establish this idea of secure isolation by proving that a user is unable to distinguish the behaviourc
of a shared machine and a private machine. For these purposes, the author defines an C− M
-compatible private machine.

● A shared machine can be defined as follows: is a C− S, I, O, Nextstate, Input, Output)M = (C−
shared machine where and and ..I = I1 × I2 × . × In ..O = O1 ×O2 × . ×On .c∈ C

● A Private Machine for can be defined as follows: c∈ C S , , O , Nextstate , Input , Output)Mc = (c Ic c c c c
with the functions and omputationC c esultR c

● Definition 1 of an M -Compatible Private Machine:
Given a shared machine and a private machine , then is an compatible privateC− ,M Mc Mc M −

machine for if .c i , Condense(Extract(c, esult(i)))≅Condense(Result (Extract(c,)))∀ ∈ I R c i
In English: The result when an compatible private machine takes the component of an inputM − c
must equal the component produced by that same input on the shared machine.c C−

● Definition 2 of an M -Compatible Private Machine (Theorem 2):
(He introduced this definition because it’s easier to derive a proof from it.)
Given a shared machine a private machine , and a function that returnsC− ,M Mc olourC : S→ C
the colour associated with who is being serviced in that state, then is an compatible privateMc M −
machine if such that :Φ∃ c : S→ Sc i , ∀ s ∀ ∈ I ∈ S

1) . If is being serviced in state in ,olour(s) c (Nextstate(s)) extstate (Φ (s))C = ⇒ Φc = N c c c s M
then the state in corresponding to the successor of is equal to the successor in Sc s∈ S Sc

of the state in corresponding to . (In other words, there’s a corresponding transitionSc s
function in)Sc

2) If is not being serviced in state in , thenolour(s) = c (Nextstate(s)) (s).C / ⇒ Φc = Φc c s M
the state in corresponding to the successor of is equal to the state in Sc s∈ S Sc

corresponding to . (In other words, no transition happens in)s Sc
3)). Defines the mapping of the input.(Input(i)) Input (Extract(c,)Φc = c i
4) . The outputs should match at each state.utput (Φ (s)) xtract(c, utput(s))O c c = E o

Proof of Separability
● A proof could be derived by constructing an compatible private machine that fits theseM − Mc

specifications. He decides that this is too arduous, so he suggests only slightly constructing an Mc

by specifying operations of the private machine, and then constraining the behaviour of a C−
shared machine so that the existence of an compatible private machine would be guaranteed.M −
(Basically, the usefulness of this theorem is that this theorem relies on defining without alsoΦ
having to define).Mc

● Specifying operations:
○ In a real machine: first, an “operation” is selected by some “control mechanism”, and then it

is “executed” to yield the next state.
○ Operation: is a set of operations, where each operation is a total function onpsO ⊆ S→ S

states.
○ Control Mechanism: extop S psN : → O
○ Execution: extstate(s) extop(s)(s)N = N

● Theorem 3:
Let be our new shared machine. Suppose there existS, I, O, Ops, Nextop, Input, Output) M = (C−
sets of states and of operations on together with abstraction functions:Sc psO c⊆ Sc → Sc Sc

and which satisfy Φc : S→ Sc bop Ops psA c : → O c c , ∀ s, , op ps, ∀i,∀ ∈ C s′∈ S ∀ ∈ O i′∈ I :
(Explanations are told in terms of a “red” user)

1) When an operation is executed on behalf ofolour(s) c (op(s)) bop (op)(Φ (s)).C = ⇒ Φc = A c c
the red user, the effects which that user perceives must be capable of complete description
in terms of the objects known to him.

2) When an operation is executed on behalf of the redolour(s) = c (op(s)) (s).C / ⇒ Φc = Φc
user, other users should perceive no effects at all.

3) Two equal -components in anxtract(c,) Extract(c,) (Input(i)) (Input(i)).E i = i′ ⇒ Φc = Φc ′ c
input map to the same state in Only red I/O devices may affect the state perceived by.Sc
the red user.

4) Two equal states in map to the(s) (s) xtract(c, utput(s)) xtract(c, utput(s)).Φc = Φc ′ ⇒ E O = E O ′ Sc
same -components in an output in . Red I/O devices must not be able to perceivec S
differences between states which the red user perceives as identical.

5) and . If is the colourolour(s) olour(s) C = C ′ = c (s) (s) extops(s) extops(s)Φc = Φc ′ ⇒ N = N ′ c
currently being serviced and they are equal in then their corresponding operations areSc
equivalent. The selection of the next operation to be executed on behalf of the red user
must only depend on the state of his regime.

● Accounting for Input/Output: changes so Prior to the function atnputI nput .I : S× I → S extstateN
each step, the machine makes a nondeterministic choice whether or not to apply the function.nputI
Replace part 3) in the theorem with:
3a) xtract(c,) xtract(c,) (Input(s,)) (Input(s,))E i = E i′ ⇒ Φc i = Φc i′
3b) . Two equal states in will transition to the same(s) (s) (Input(s,)) (Input(s ,))Φc = Φc ′ ⇒ Φc i = Φc ′ i Sc
state in given the same input. I/O devices must not be able to cause dissimilar behavior to beSc
exhibited by states which the red user perceives as identical.

● Further work: relax second condition in Proof of Separability to include communication between
users.

