Message Authentication & Public Key Encryption

COMP 435 Fall 2017 Prof. Cynthia Sturton Message Authentication

Alice	Message Authentication
msg	
	msg >
	Is msg authentic?

٦

Alice	Message Digest
H_m := h(m) $m + H_m$	
	$H_m \stackrel{?}{=} h(m)$

Message Digest

- Variable length input
- Fixed length output

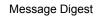
Message Digest Example: Mod 10 arithmetic

Input: 5 Output: 5

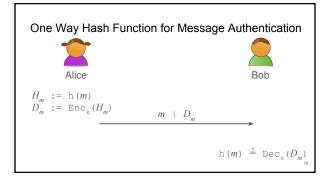
• Variable length input

• Fixed length output

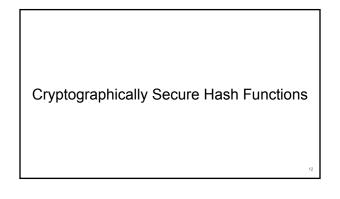
Input: 29882 Output: 2


6

٦


Message Digest

- Variable length input
- Fixed length output
- Multiple inputs map to one output


Alice		Message Digest
$H_m := h(m)$	$m \mid H_m$	
		$H_m \stackrel{?}{=} h(m)_{s}$

A digest demonstrates presence of modification; A digest does not prove the absence of modification.

Keyed Has	Message Authentication Code (MAC)
Alice	Bob
H_m := h(k m)	<i>k</i>)
	$m \mid H_m \rightarrow$
	$H_m \stackrel{2}{=} h(k \mid m \mid k)$

Cryptographic Hash

- 1. Function is one way
- 2. Pre-image resistant
- 3. Second pre-image resistant
- 4. Collision resistant

Function is One Way

Given H, there is no easy algorithm for computing m s.t. h(m) = H.

Collision Resistant

Hard to find *m*, *m*' such that

 $m \neq m$ ' and

h(m) = h(m')

Second Pre-image Resistant

Given *m*, hard to find *m*' such that

 $m \neq m'$ and

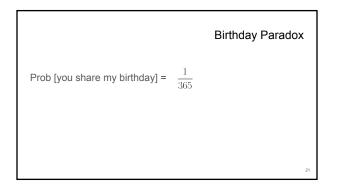
h(m) = h(m')

Pre-image Resistant

Let H := h(m).

Given H, hard to find any m' such that

h(m') = H


Cryptographic Hash


1. Pre-image resistant

- 2. Second pre-image resistant
- 3. Collision resistant

Pre-image Resistant vs. Collision Resistant and the Birthday Paradox

Pre-image Attack vs. Collision Attack		
Pre-image Attack	Collision Attack	
Given <i>H</i> , find <i>m</i> s.t.	Find m, m' where $m \neq m'$ s.t.	
h(m) = H	h(m) = h(m')	

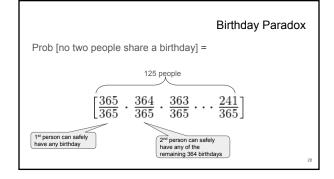
Birthday Paradox

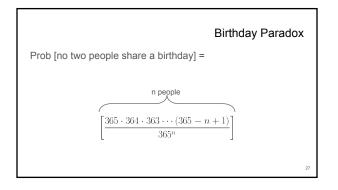
Prob [any two people in the class share a birthday] = ??

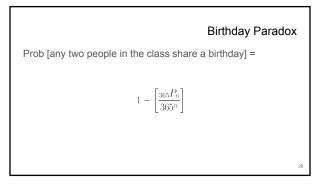
Birthday Paradox

Prob [any two people in the class share a birthday] = ??

Consider all the possibilities

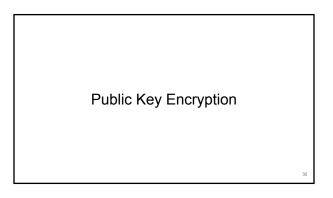

- All the ways there could be one match in the classroom
- All the ways there could be two matches
- ...


Birthday Paradox

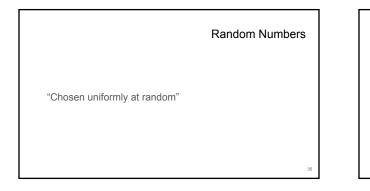

25

Prob [any two people in the class share a birthday] =

1 - Prob [no two people share a birthday]



Number of people	P(Any two people share a birthday)
1	0%
5	2.7%
10	11.7%
20	41.1%
23	50.7%
30	70.6%
40	89.1%
50	97.0%
60	99.4%


Back to Message Authentication	
	30

Alice	Message Authentication Code (MAC)
MAC_m := f(k	<i>, m</i>)
	$m \mid MAC_m \rightarrow$
	$MAC_m \stackrel{?}{=} f(k,m)_{31}$

Alice	Public Key Encryption
$C = \text{Enc}_{\text{B-pub}}(m)$	С
	$m = \text{Dec}_{\text{B-priv}}(C)$

F	andom Numbers
	34

Random Numbers

"Chosen uniformly at random"

36

Random Numbers

"Chosen uniformly at random"

Large Numbers

An exercise

Key length: 56 bits

Number of possible keys:

Large Numbers

An exercise

Key length: 56 bits

Number of possible keys: 2^56

In decimal notation: