

Message Authentication

- Variable length input	

	Message Digest
- Variable length input	
	Example: Mod 10 arithmetic length output
Input: 5	
Output: 5	
	Input: 29882
	Output: 2

Cryptographic Hash

1. Function is one way
2. Pre-image resistant
3. Second pre-image resistant
4. Collision resistant

Given H,
there is no easy algorithm for computing m s.t. $\mathrm{h}(m)=H$.

Collision Resistant

Hard to find m, m^{\prime} such that
Given m, hard to find m ' such that
$m \neq m$ ' and
$m \neq m$ ' and
$\mathrm{h}(m)=\mathrm{h}\left(m^{\prime}\right)$

Let $H:=\mathrm{h}(m)$.
Given H, hard to find any m ' such that
$\mathrm{h}\left(m^{\prime}\right)=H$

Pre-image Attack vs. Collision Attack

Pre-image Attack
Given H, find m s.t.
$\mathrm{h}(m)=H$

Collision Attack

Find m, m where $m \neq m$'s.t.
$\mathrm{h}(m)=\mathrm{h}\left(m^{\prime}\right)$

	Birthday Paradox
Prob [you share my birthday] $=\frac{1}{365}$	

Birthday Paradox
Prob [anyone in the class shares my birthday] $=\frac{125}{365}$

Birthday Paradox

Prob [any two people in the class share a birthday] = ??
Consider all the possibilities

- All the ways there could be one match in the classroom
- All the ways there could be two matches
- ...

Birthday Paradox

Prob [any two people in the class share a birthday] =

$$
1-\left[\frac{365 P_{n}^{-}}{365^{n}}\right]
$$

Number of people	P (Any two people share a birthday)
1	0\%
5	2.7\%
10	11.7\%
20	41.1\%
23	50.7\%
30	70.6\%
40	89.1\%
50	97.0\%
60	99.4\%

> Back to Message Authentication

Public Key Encryption

	Random Numbers
"Chosen uniformly at random"	

	Large Numbers
An exercise	
Key length: 56 bits	
Number of possible keys:	

Large Numbers

An exercise

Key length: 56 bits
Number of possible keys: $2^{\wedge} 56$
In decimal notation:

