SEED Labs 1

Crypto Lab — Exploring Collision-Resistance, Pre-Image
Resistance and MACs

Copyright (©) 2006 - 2014 Wenliang Du, Syracuse University.

The development of this document is/was funded by three grants from the US National Science Foundation:
Awards No. 0231122 and 0618680 from TUES/CCLI and Award No. 1017771 from Trustworthy Computing.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy
of the license can be found at http://www.gnu.org/licenses/fdl.html.

1 Overview

The learning objective of this lab is for students to get familiar with pre-image resistant hash functions and
Message Authentication Code (MAC). After finishing the lab, in addition to gaining a deeper understanding
of the concepts, students should be able to use tools and write programs to generate hash values and a MAC
for a given message.

2 Lab Environment

Installing OpenSSL. In this lab, we will use openssl commands and libraries. We have already in-
stalled openssl binaries in our VM. It should be noted that if you want to use openssl libraries in
your programs, you need to install several other things for the programming environment, including the
header files, libraries, manuals, etc. We have already downloaded the necessary files under the directory
/home/seed/openssl-1.0.1. Toconfigure and install openss1 libraries, go to the openssl1-1.0.
folder and run the following commands.

You should read the INSTALL file first:

sudo ./config
sudo make

sudo make test
sudo make install

o0 o o o°

Installing a hex editor. In this lab, we need to be able to view and modify files of binary format. We have
installed in our VM a hex editor called GHex. It allows the user to load data from any file, view and edit
it in either hex or ascii. Note: many people told us that another hex editor, called Bless, is better; this
tool might not be installed in the VM version that you are using, but you can install it yourself using the
following command:

% sudo apt-get install bless

3 Lab Tasks

3.1 Task 1: Generating Message Digest and MAC

In this task, we will play with various hash algorithms. You can use the following openssl dgst com-
mand to generate the hash value for a file. To see the manuals, you can type man openssl and man

SEED Labs 2

dgst.

[

% openssl dgst dgsttype filename

Replace the dgsttype with a specific hash algorithm, such as -md5, —shal, -sha256, etc. In this
task, you are encouraged to try at least 3 different algorithms. You can find the supported hash algorithms
by typing "man openssl".

3.2 Task 2: The Randomness of a Hash

To understand the properties of hash functions, we would like to do the following exercise for MD5 and
SHA256:

1. Create a text file of any length.

2. Generate the hash value H; for this file using a specific hash algorithm.

3. Flip one bit of the input file. You can achieve this modification using ghex or Bless.
4. Generate the hash value H for the modified file.

5. Observe whether [and Hy are similar or not. Write a short program to count how many bits are
different between H; and Ho.

Calculating the Hamming Distance is a mathematical way to determine the differences between two objects
(or strings, boxes, files, hashes, ect.). For the first program you are going to submit on Sakai, you are going
to write a program which calculates the Hamming distance between two different hashes for their bits. For
example, take the hash "ab123” and ab122”. These two hexadecimal values result in:

10101011000100100011
10101011000100100010

in binary respectively. The Hamming Distance between both of them is 1, because only one bit is
different between the two hex values. For this program, input two hexadecimal values via command line
arguments, and name your program a2_YourOynen_hamming.py . Important! Make sure that you can run
your program in terminal like:

python3 a2_YourOnyen_hamming.py abl23 abl22

The output for this case will be:

1

Another sample command and subsequent output:

python3 a2_YourOnyen_hamming.py ff3a7 ff4dbl
6

SEED Labs 3

Next, create two files of at least 10 readable ascii characters (not hex values) that differ by only 1 bit
(not just a character!). Hash both of these strings using a cryptographic hash and then observe the hamming
distance between both hashes of your two strings.

For this task you will submit the following files to Sakai.

1. a2_YourOnyen_hamming.py
2. A file named stringl.txt with a single string on a single line

3. A file named string2.txt with a single string on a single line with a one bit difference from string1.txt

3.3 Task 4a: Exploring Pre-image Resistance

In this task, we will investigate the difference between hash function’s two properties: the pre-image re-
sistance property versus collision-resistant property. We will use the brute-force method to see how long
it takes to break each of these properties. Instead of using openssl’s command-line tools, you are re-
quired to write your own Python3 program to invoke the message hexdigest functions in Python’s built
in hashlib’s crypto library. A sample code can be found from https://docs.python.org/3/
library/hashlib.html. Please get familiar with this sample code.

Since most of the hash functions are quite strong against the brute-force attack on those two properties,
it will take us years to break them using the brute-force method. To make the task feasible, we reduce the
length of the hash value to 24 bits. We can use any pre-image resistant hash function, but we only use the
first 24 bits of the hash value in this task. Namely, we are using a modified pre-image resistant hash function.

Now, let us say that we have the SHA-256 sum:
d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592
(Whereas this SHA-256 sum happens to be of the string “The quick brown fox jumps over the lazy dog”)

To test the pre-image resistance property, your goal is to find a string which collides with the first 24 bits
of a given SHA-256 sum. For example, a 24 bit collision for the above hash would be Oxd7a8fb. Write
a Python3 program which will take as input a SHA-256 sum, and produce an output a string whose hash
sum collides (for the first 24 bits) with the given hash sum. Use the hashlib library to generate the hashes.
As soon as a colliding pre-image (the string) is found, your program should terminate. Name your file
a2_YourOnyen_preimage.py. Your program should take the hash directly as a command line argument.

For example our input may look like:
d7a8fbb307d7809469ca%abcb0082e4£8d5651e46d3cdb762d02d0b£37c9e592

and you would run your program like:

python3 a2_YourOnyen_preimage.py d7a8fbb307d7809469ca%abcb0082e4
£8d5651e46d3cdb762d02d0b£f37c9e592

For the above input, my output is the following. Note that the SHA-256 sum of the below string collides
in the first 24 bits.

19503334fhjasbfjhebw

SEED Labs 4

For fun:
When you have completed the assignment, try to find a collision up to 28 bits or 32 bits. How much longer
did it take?

3.4 Task 4b: The Collision Resistant Property

Next you will be testing the collision-resistant property. Now, write a python script which generates 1 line of
output as before, except this time you choose both m1 and m2 (and keep searching until you find a collision
between any of the pairs) Output a line with two strings separated by a single space. These two strings will
have their first 24 bits collide with each other on a SHA-256 sum. For example, my output is:

12856fhjasbfjhebw 739fhjasbfjhebw

Your program must not print any hard coded values and should take less than 10 seconds to run. Note that
the first 24 bits of each of these strings above collide. Your program should not take any input as a command
line argument and will be run like:

python3 a2_onyen_collision.py
Answer the following questions:

1. What is the average number of trials it took you to break pre-image resistance based on
15 experiments?

2. What is the average number of trials it took you to break collision-resistance based on
15 experiments? What is the collision that you found, and what is their hash?

3. Which one is easier to break using brute force?

4 Submission
Submit your code on Sakai. You will submit the following files:

1. a2_YourOnyen_hamming.py
2. stringl.txt
3. string2.txt
4. a2_YourOnyen_preimage.py
5. a2_YourOnyen_collision.py

6. YourOnyen_report.txt (The answers to the above questions)

