
A Survey of Computer Vision Research for Automotive Systems

Cheng-Yang Fu
cyfu@cs.unc.edu

Chun-Kun Wang
amos@cs.unc.edu

Eunbyung Park
eunbyung@cs.unc.edu

Computer Science
University of North Carolina at Chapel Hill

May 5, 2015

1 Computer Vision Research and Benchmarks for Automonous Driving

1.1 Intuition

Current autonomous driving technology heavily relies on a special sensor, Velodyne Sensor, and a detailed

precision map. From Darpa Grand Challenge in 2005 to current Google Car, Velodyne Lidar sensors are

used widely. They could provide 360 degree real-time 3D distance map by illuminating environment with

lasers and analyzing the reflect light. The 3D distance map can be used in obstacle detection and navigation.

However, according to the marketing report, Velodyne LIDAR scanner used in Google Car costs 70,000

dollars which is much higher than the average budget people expect. Another constrain Google Car facing

is a high definition inch-precision map. For example, the map should include the height of traffic light. That

means Google Car can only drive when the precision map is provided. It limits usage of Google Car to only

small areas. Although these two technologies provide important functions for autonomous driving, they also

make universalizing autonomous car become impossible.

1.2 KITTI Vision Benchmark Suite

In 2012, a computer vision benchmark, the KITTI vision benchmark suite[13], is created to encourage com-

puter vision research communities to develop algorithms to reduce the reliance on Velodyne Lidar sensors

and detailed maps. The benchmark includes stereo, optical flow, visual odometry, 3D object detection and

3D tracking. To achieve this goal, they equipped a standard station wagon with two high-resolution color

and grayscale video cameras. Figure 1 shows the recording platform with sensors. Accurate 3D infor-

1

mation and position used as ground truth are provided by a Velodyne laser scanner and a GPS localization

system. Besides, providing the raw data, KITTI suite provides preprocessed data as benchmarks for each

task. Evaluation metric and website are also included to let users have same evaluation standard and a plat-

form to easily compare their results. Compared with other benchmarks, the KITTI provides more realistic

data recorded in real-world instead of in laboratory environment.

Figure 1: The standard station wagon is equipped with color stereo camera, grey stero camera, Velodyna
Laser Scanner, and GPS system.

1.2.1 Sensors and Data Acquisition

The recording system is built from current autonomous driving platform. The aim is to extract suitable data

for stereo, optical flow, visual odometry and 3D object detection tasks. The whole benchmarks are captured

by driving around a mid-size city of Karlsruhe, in rural areas and on highways. In [13], the authors provides

the detailed parameters of all equipments they used: the recording platform is equipped with two color

and two grayscale PointGrey Flea2 video cameras (10 Hz, resolution: 1392512 pixels, opening: 90 35), a

Velodyne HDL-64E 3D laser scanner (10 Hz, 64 laser beams, range: 100 m), a GPS/IMU localization unit

with RTK correction signals (open sky localization errors ¡ 5 cm). Figure 2 shows the summary of KITTI

benchmarks and a comparison to other datasets.

2

Figure 2: Comparison of current State-of-the-Art Benchmarks and Datasets. Proposed Dataset means KITTI
benchmark.

1.3 Tasks

In this section, we introduce tasks provided by KITTI benchmark suites and the leading methods in each

task.

1.3.1 Stereo Matching

Stereo Matching [1] is the extraction of 3D information from digital images. Two cameras displaced hori-

zontally from one another are used to obtain different views on a scene. By comparing these two images,

the relative depth information can be obtained in the form of disparities.

The state-of-the-art method of stereo matching in KITTI benchmark is Displets[5]. Stereo Matching is

a traditional topic and has tremendous progress in last decades. However, certain problems still exist. The

3

disparities of reflecting or textureless surfaces are not easily recovered. The reason is the points in these

surface are less discriminative. Normally, the points with specific edges are easily found correspondence in

another image and vice versa. Once we can not match points in these two images accurately, the disparity

map will not be correct. Displets [5] proposes to use object knowledge to conquer this problem. The

most common object in the street is a vehicle. By using this observation, Displets uses a set of 3D CAD

models of vehicle as knowledge and make the output disparity map fit these models acting as a long distance

regularizers. Figure 3 shows that the disparity map is improved and smoother when class-specific, car object

knowledge is given.

Figure 3: Resolving Stereo Matching Ambiquities: without using object knowledge,stereo methods often
fail at reflecting, textureless surface(top). By using 3D object models, both quantitatively and qualitatively
are improved(mid) while the 3D geometry of the objects are recovered in the scene(bottom).

1.3.2 Optical Flow

Optical Flow [2] is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused

by the relative motion between an observer and the scene. Optical Flow can construct motion flow and 3D

information by comparing temporarily adjacent image sequences captured by a single moving camera. Nor-

mally, optical flow is consider as a low-level operation for motion analysis. It can be used for segmentation

of moving object or tracking.

The state-of-the-art method of Optical Flow in KITTI benchmark is VC-SF [6] using multiple consecu-

tive frames and stereo video simultaneously. Traditionally, the computation of Optical Flow only consider

4

two temporarily adjacent frames. However, it can be easily interfered by occlusions or view-dependent bias.

In order to solve the noise phenomenon, VC-SF [6] use a longer time period and multiple views generated

from the stereo camera. By setting constrains forcing estimation of Optical Flow be consistent across the

different views in a longer time period, the results show the effects of outliers will be smaller. In Figure 4,

the frame at time t=0 suffered severe disturbance. However, by using multiple frames and viewpoint of the

right camera, the results is robust against such noises.

Figure 4: Consistency over multiple frames makes scene flow estimation robust against severe disturbances
like the windscreen wiper. (left) Input frames. (middle) The left view at time t = 0. (right) Our scene flow
estimate for that viewpoint (shown, from left to right, as disparity and reprojected 2D flow field).

1.3.3 Visual Odometry

In current autonomous driving, localization is crucial. Autonomous vehicles need precision localization

to figure out the lane they can drive. Most adopted localization systems are GPS-based guidance system,

specially in urban areas. However, GPS signals are not available under certain circumstances, such as

tunnels or indoor environment. Another one is map-based system. Such system needs a pre-built databases

containing street views of cities. When the autonomous vehicle is running, it can query the scene to know

the current location. Due to the pre-built database is need, the areas which autonomous vehicle can drive

are limited. Therefore, computer vision community propose Visual Odometry as a second source to aid

localization.

Visual Odometry [3] is the process of determining the position and orientation by analyzing the associ-

ated camera images. Most existing approaches contain following stages. First, feature extraction is applied

on every frame of the input video. The goal of feature extraction is to match the point across frames and use

these points to construct the optical flow. Then the optical flow can be analyzed to estimate the motion of

5

camera.

Most methods submitted to KITTI evaluation website use not only traditional videos but also 3D infor-

mation from LIDAR system or stereo camera. The key step in Visual Odometry is constructing the optical

flow. By using 3D information, a more accurate optical flow result can be expected.

Currently, the leading approach V-LOAM [7] can run in real-time (at least 30 frames per second) and

provide accurate results. Figure 5 is the result of V-LOAM. First, the distance difference between ground

truth and the estimation from Visual Odometry is really small. Another one is that the loop is detected. If

the localization system is not accurate enough, redundant paths will be generated.

-200

-100

 0

 100

 200

 300

 400

-300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

Figure 5: A example generated by V-LOAM shows that the loop can also be detected instead creating
multiple redundant paths

1.3.4 3D Object Detection

Object Detection [4] is a technology dealing with detecting instances of semantic objects of a certain class.

In KITTI benchmark, Object Detection focuses on three kinds of object: Car, Cyclist, and Pedestrian. Most

methods submitted in KITTI evaluation website only use a single monocular image without 3D information

from LIDAR system or stereo camera. Ideally, the 3D information can provide a better shape feature and

improve the detection result. We think it is worth to further investigate this phenomenon.

6

Regionlets [8] achieves great results on these 3 classes. Because the exist of local parts of object is an

useful feature for object detection, the intuition is finding discriminative local parts of object then deciding

the possible locations of these parts. Figure 6 is an example illustrating how it works. In pedestrian

detection, hands can be a good discriminative local part of pedestrian due to the color. Because of physical

composition, when searching hands, we only need to consider the upper side of bounding box represented

as blue rectangles. The distribution of location of hand can be discovered by calculating through all training

images. In this case, the most N possible locations are extracted, called regionlets, and shown as orange

rectangles. So, in testing time, given a bounding box, we only need to detect the hand appear or not in these

regionlets. Multiple models are generated to represent different parts of pedestrian. The output of each

model will be a feature for pedestrian detection. Regionlets use a boosting learner to choose useful features

and the coefficient of them.

Figure 6: Illustration of the relationship among a detection bounding box, a feature extraction region and
regionlets. A feature extraction region R, shown as a light blue rectangle, is cropped from a fixed position
from 3 samples of a person. Inside R, several small sub-regions denoted as r1, r2 and r3 (in orange small
rectangules) are the regionlets to capture the possible locations of the hand for person detection.

1.4 Conclusion

KITTI benchmark suites provide useful resource for autonomous driving development in computer vision

field. KITTI evaluation website provides a platform to let users submit their methods and compare them in

different ways: runtime, environment, extra input information, and coding language.

7

Figure 7: A common computer vision pipeline for image classification. Slide credit:
http://ufldl.stanford.edu/eccv10-tutorial/

2 Performance of Computer Vision

2.1 Background of computer vision and real-time computing

In this section, we will introduce basic technique of computer vision which is related to performance issue

and the basic concept of real-time computing. In terms of automotive, pedestrian detection becomes the

most relevant topic. Also, how pedestrian detection operates in real time is an essential part.

2.1.1 Computer Vision

Here the technique of computer vision we focus on is pedestrian detection in terms of pedestrian. Figure 7

shows that A common computer vision pipeline for image classification. First, we analyze basic images and

then extract these images’ feature. With these image feature, we can construct the dictionary which helps to

search the specific image in the frame we want or classify the image whether is the object we are looking

for or not. Typically, the training flowchart can be separated by four steps, such as extract training sample,

feature extraction, classifier selection, and validation. We will go through these four step and introduce these

basic four techniques for pedestrian detection as following.

Extract Training Sample In extract training sample [9] in Fig 8, it shows an excerpt from the Daimler

pedestrian detection benchmark data set. The benchmark data set has three parts: Pedestrian training sam-

ples consider as positive samples which provided as training examples is 15,660. And, these samples are

got from manually extracting 3,915 rectangular position labels from video images. Second part is negative

8

Figure 8: Daimler pedestrian detection benchmark data set: (a) Pedestrian training samples, (b) nonpedes-
trian training images, (c) test images with annotations. Source from [9].

samples which contained 6,744 full images without any pedestrians. With the positive and negative samples,

we can detect pedestrian in the images shown as Fig 8 (c) with annotations.

Feature Extract In feature extract, one of the essential techniques is Histogram of Oriented Gradients

(HOG), see Fig 9. HOG are feature descriptors used in computer vision and image processing for the

purpose of object detection. Paper [9] shows that local gradients are packed by using their orientation, then

weighted by their magnitude. That confined in a spatial grid of cells with overlapping blockwise contrast

normalization. With overlapping block, we extracted a feature vector by sampling the histograms from the

contributing spatial cells. Finally, we get the feature vectors for all blocks which are concatenated to produce

a final feature vector, which is subject to classification using a linear support vector machine (linSVM).

Classifier Selection In classifier selection, support vector machines (SVM) can be used as supervised

learning models which associated learning algorithms. These algorithms can analyze data and recognize

patterns for classification and regression analysis. Moreover, a SVM yields a hyperplane or set of hyper-

planes in a high- or infinite-dimensional space. We use the hyperplane for classification, regression, or other

tasks. That is, a good separation is achieved by the hyperplane that can create largest distance to the nearest

training-data point of any class.

2.1.2 Real-time Computing

Real-time computing provides hardware and software systems a ”real-time constraint”, for example oper-

ational deadlines from event to system response. Real-time programs have to guarantee response within

specified time constraints, called as ”deadlines”. And real-time responses are often known as in the order

9

Figure 9: (a) Overview of HOG/linSVM architecture. Cells on a spatial grid are shown in yellow, whereas
overlapping normalization blocks are shown in green. (b) Average gradient image along with visualization of
positive and negative SVM weights, which highlight the most discriminative regions for both the pedestrian
and nonpedestrian classes. Source from [9].

of milliseconds, and sometimes microseconds. A system is said to be real-time if the system satisfies two a

dual notion of correctness, such as logical correctness and temporal correctness. Logical correctness means

that real-time system does the right thing; temporal correctness is that system finishes its job on time.

Otherwise, in real-time computing, there are two standards classified by the consequence of missing a dead-

line: hard real-time, firm real-time, and soft real-time. In terms of hard real-time, if any hard deadline is ever

missed, then the system is incorrect. Requires a means for validating that deadlines are met. Soft real-time,

however, may occasionally be missed. The usefulness of a soft real-time with missing its deadline, thereby

degrading the system’s quality of service. Otherwise, firm real-time is that a soft deadline such that the

corresponding jobs usefulness function goes to 0 as soon as the deadline is reached.

2.2 Computer Vision and Real-time

When it comes to computer vision in real time, people usually set real-time constraint as 30 fps (frames per

second). In order to succeed 30 fps, the research use different approaches to achieve the real-time goal, such

as software level, hardware level, and hybrid. In the following, we talk about three papers [10, 11, 12] and

exploit the basic how they achieve real-time computing of pedestrian detection.

10

2.2.1 Software Level

The research [10] talks about pedestrian detection in driver-assistance systems. They propose a monocular

vision system for real-time pedestrian detection and tracking during nighttime driving with a near-infrared

(NIR) camera, see Fig. 10. They use three modules, such as region-of-interest (ROI) generation, object clas-

sification, and tracking. These three modules are integrated in a cascade, and each utilizes complementary

visual features which can distinguish the objects from the cluttered background in the range of from 20 to

80 meters. In Fig. 10, the ROI generation module contains two steps: image segmentation and candidate se-

lection. The image segmentation step contains two thresholds in order to calculate each pixel the horizontal

scan line.

That is able to determine the foreground based on the fact that pedestrians which appear brighter than the

nearby background in NIR images. In pedestrian classification, a tree-structured, two-stage detector, based

on Haar-like, digital image features used in object recognition, and HOG features, is used to deal with the

problem that high performance and real-time constraint against the large intra class variability in the pedes-

trian class. Otherwise, AdaBoost here is used to select the critical features and learn the classifiers from the

training images.

This paper balances the robustness and efficiency at a high performance level. There are some novel ap-

proaches have been proposed which are the efficient adaptive dual-threshold segmentation for candidate gen-

eration, the tree-structured two-stage detector to reduce the complexity of pedestrian classification caused by

large intraclass variability, and template-matching-based tracking for multiframe validation. Hence, results

show that, on a Pentium IV 3.0-GHz personal computer, the algorithm can produce a detection rate of more

than 90% at the cost of about 10 false alarms/h and perform as fast as 30 fps.

2.2.2 Hardware Level

We discuss the pedestrian detection achieve real-time computing by using software scheme. For this part,

we introduce a paper [11] which takes advantage of hardware performance to reach above 30 fps. [11] try

to find out the workload of pedestrian detection which can be parallel executed by hardware and distribute

jobs to FPGAs.

11

Figure 10: Overview of the system modules. Source from [10].

According to paper [11], Co-occurrence histograms of oriented gradients (Co-HOG) is a powerful feature

descriptor for pedestrian detection. Co-HOG uses uses pairs of gradient orientations. However, its calcu-

lation cost is large because the feature vector for the CoHOG descriptor is very highdimensional. Each

co-occurrence matrix C with an offset (x, y) can be expressed as a 64-dimensional vector fk,x,y, see below:

Ci,j =

n−1∑
p=0

m−1∑
q=0

{
1, ifI(p, q) = iandI(p+ x, q + y) = j,

0, otherwise

According to CoHOG feature vector F, K 31 co-occurrence matrices for all combinations of block k and

offset (x, y) are calculated. This part is key component that we can use that for parallel computing, since

no overlaps and calculation dependencies between any two blocks exist. Hence, all cooccurrence matrices

fk,x,y can be calculated in parallel. Paper shows that it can exploit K × 31 parallelism at its maximum with

this parallelization approach.

Paper [11] shows the proposed architecture for pedestrian detection based on Co-HOG. Main components

of Fig. 11 are a module for generating images which represent gradient orientations and a merged module

for executing histogram calculation and SVM prediction at the same time.

This proposed algorithm is implemented on Virtex-5 FPGA and the result shows that hardware architecture

can process 139,166 sub-windows per second and it achieves real-time pedestrian detection on 38 fps 320240

video.

12

Figure 11: Overview of the proposed architecture. Source from [11].

2.2.3 Hybrid

In this paper [12], they use not only software but also hardware to increase the performance of pedestrian

detection. This paper presents a new pedestrian detector that improves both in speed and quality. They

modified the process of detection. A basic process of detection contains multiple scales, sliding window,

feature extraction, and classify. First, we generate multiple images on different scales and then use sliding

window on all locations which find out the region of interest. When the region to analyze is ready, We

extract HoG from current window. Final step is using LinearSVM to classify whether the region of interest

is the target object or not.

Fig. 12 shows different approaches to detecting pedestrians at multiple scales. Figure 12 (a) is a traditional

approach which scales N is usually in the order of 50 scales. This way need a lot of data for this method and

also tend to cause overfitting problem. Second, the figure 12 (b) is to train a single model for one canonical

scale, and then rescale the image N times. However, this way causes two problems: one is that training a

canonical scale is delicate; the other is that one needs to resize the input image 50 times at run-time, and

13

Figure 12: Different approaches to detecting pedestrians at multiple scales. Source from [12].

recompute the image features 50 times, too. The third way is that without rescaling the input image N times,

one rescales image only N=K times, see figure 12 (c). But, this way can not apply on Histogram of Oriented

Gradients (HoG) since HoG need to recalculate. Final, figure 12 (d) shows the way is proposed by this

paper. It skips some feature extraction by using N/K model and get approximated models quickly since they

scale the features not the images.

With the high parallelism of their solution [12], it will directly benefit from future hardware improvements.

The result shows that the proposed approach presented a novel pedestrian detector running at 135 fps in one

CPU+GPU enabled desktop computer.

2.2.4 Conclusion

Although pedestrian detection has many challenges, such as various style of clothing in appearance, the pres-

ence of occluding accessories, and frequent occlusion between pedestrians, we only focus on performance

issue in this report and we do not discuss how detection accuracy is. As we discuss above, we introduce

three major papers to exploit how these paper achieve real-time computing in pedestrian detection. How-

ever, these papers fail to give their approach a lower bound that guarantee the performance in real-time. As

we know the real-time constraint of computer vision is 30 fps, actually 30 fps is not a specific and object

requirement which is a threshold human eyes cannot tell. Hence, in terms of computer vision, real-time

computing transforms to high performance problem. We can find that these paper try to run detection as fast

as they can to reach real-time requirement, but never satisfy real-time guarantee, since the most important

requirement of a real-time system is predictability and not performance.

14

3 Deep Convolutional Neural Network in Computational Perspective

3.1 Introduction

Convolutional neural network (CNN) has been remarkably successful in many computer vision tasks, such

as object recognition, detection, segmentation, and so on. Its mainly because of good representation (or

image features) learnt by CNNs, and the key enabling factors are the increase of computational power and

big labeled datasets, which allow us to scale up the networks to tens of millions of parameters.

It is known that the large networks would consume a lot of computational power, which might not

be appropriate for the resource constrained environment, such as mobile or embedded system. However,

nowadays we can easily see the powerful and energy efficient embedded systems thanks to the advancement

in computer architecture. So, people starts to pay attention to running deep CNN on them and come up with

the solutions that is highly optimized in those architecture.

In this report, we presents some explanation in computational perspective so that we will be able to come

up with the system that support deep CNN and satisfy real-time constraints.

3.2 The components of deep convolutional neural network.

The deep CNN is constructed by several components. It includes convolutional, pooling, non-linear func-

tion, normalization and fully connected layers. It might contain other layers, but these are the common

components. Out of those layers, convolutional layer and fully connected layers are main part of computa-

tion. So, in this report we focused on the two layers.

3.3 Fully connected layer

Figure 13 is how fully connected layer looks like. Another name of fully connected layer is feed forward

neural network. The reason why it is called as fully connected layer is each neurons are densely fully

connected.

In order to compute the output of unit h(1), we compute dot product between weights that are connected

to h(1) and previous layers outputs, in this case x. h(2) and h(3) also can be computed in this way. So, if

we build a weight matrix W, computing h vector would be simple matrix multiplication. There might be

15

Figure 13: Fully connected layer or feed forward neural network

many cases that we need to compute multiple inputs. In that case, we can simply iterate for loops and each

iteration, we can simply compute matrix multiplication.

3.4 Convolutional Layer

Convolutional Layer is heart of the deep CNN. Figure 14 shows graphical explanation of how convolution

looks like. The input is 2 dimension matrix(actually, it doesnt have to be 2 dimension) and the output is also

2 dimension matrix. The size of output is not necessarily same as the size of input. It could be smaller or

even larger, however, in practice we usually pad zeros on the outside of input matrix so that we can make

them same size. The size of padding depends of the filter size.

There is the filter that convolve on the input. In other words, to compute the value of outputs ith row and

jth col, we compute the dot product between the filters and corresponding inputs region. So, computational

complexity is the size of filters times the size of outputs. The size of filters can vary, for example 3x3, 5x5,

or 7x7. There is no rules about how large the filters should be. In practice, lower layers tend to have larger

filters(7x7) and higher layers tend to have smaller filters(3x3).

3.5 Lowering convolution to matrix multiplication

There are many ways to compute convolutions. The obvious way is to compute convolution directly as

previous section explained. For example, we can write some cuda program that each cuda kernel compute

16

Figure 14: Convolutional layer

Figure 15: Lowering convolution

each output elements. However, it turns out that it is not easy to implement this in efficient way for every

corner cases. We should be able to deal with different size of filters, outputs, inputs, padding, and so on

since our computing architectures are very sensitive to memory hierarchy.

Another way is to take advantage of existing efficient computation routines, such as matrix multiplica-

tion. This routines have been highly optimized in several programming library, for example BLAS, cuBLAS,

and so on. So, people came up with the trick to translate convolutions into matrix multiplication, which

sometimes is called as Lowering to matrix multiplication.

Red box in figure 15 is the input and black box is the filters(or weights). Here, the size of input is 3x3,

there is no padding, the size of filters are 2x2, so the size of output is going to be 2x2. Instead of computing

convolution directly, we change the form of input(left) into right side. For example, we take 2x2 patch out

17

Figure 16: Lowering convolution from cuDNN [14]

of inputs, (1,2; 4,5), and make it as one column vector, (1;2;4;5). And similarly (2,3; 5,6) -¿ (2;3;5;6). Once

we change the form in this way, we can easily compute convolution with matrix multiplication.

In real deep CNN, there are multiple input channels. For example, the first layers input channel might

be R,G,B color channels in image case. Our filters are going to be 7x7x3, here 7 is the height and width of

the filters and 3 is the number of channels. The way to compute the output is first to compute convolution

on each input channels, and then sum of 3 outputs to get one output. In addition to multiple input channels,

we can also have multiple filters. If the number of filters is 10, our filters are going to be 7x7x3x10 tensor.

In this case, the number of output channels is 10. Obviously, the output channels is input channels of next

layer, so next layers the number of input channels is 10. Given all these things together, we can lower the

convolution to large one matrix multiplications.

In this example, we have 3 input channels, 2 filters, the size of input is 3x3, the size of filters is 2x2.

Therefore, the number of output channels is 2, the size of one output channel is 2x2 and the total dimension

of the output is 2x2x2. As you can see in the figure 16, we can make it as one big matrix multiplication.

Here output matrix O is 2x4, which can be easily converted to 2x2x2.

18

3.5.1 Discussion

One might ask about the cost of lowering the convolutions. It turns out that it can be implemented in very

efficient way and no acatual computation is involved. Another issue is the size of converted matrix. It might

be some problem because sometimes it is impossible to allocate a large chunk of memory. So, we might

need to have some ways to divide the computation into several steps.

3.6 Other Layers

There are some important layers we havent covered. One is non-linear activation function. It is simple

element wise operation, so we can easily parallelize this layer. Another important layer is pooling layer.

It is very similar to convolutional layer in terms of computation. For average pooling layer, we can easily

design convolution filters that exactly do the same thing. For max pooling layer, we can easily replace the

dot product with max operation.

References
[1] ”http://en.wikipedia.org/wiki/Computer stereo vision.”

[2] ”http://en.wikipedia.org/wiki/Optical flow.”

[3] ”http://en.wikipedia.org/wiki/Visual odometry.”

[4] ”http://en.wikipedia.org/wiki/Object detection.”

[5] Fatma Gney and Andreas Geiger,”Displets: Resolving Stereo Ambiguities using Object Knowledge,”
Conference on Computer Vision and PatternRecognitionRecognition (CVPR), 2015.

[6] Christoph Vogel and Stefan Roth and Konrad Schindler, ”View-Consistent 3D Scene Flow Estimation
over Multiple Frames,” ECCV (4)’14

[7] Ji Zhang and Sanjiv Singh, ”Visual-lidar Odometry and Mapping: Low-rift, Robust, and Fast,” IEEE
International Conference on Robotics and Automation(ICRA), 2015.

[8] Xiaoyu Wang and Ming Yang and Shenghuo Zhu and Yuanqing Lin,”Regionlets for Generic Object
Detection,” International Conference on Computer Vision, 2013.

[9] Enzweiler, Markus, and Dariu M. Gavrila., “Monocular pedestrian detection: Survey and experiments”,
Pattern Analysis and Machine Intelligence, IEEE Transactions on 31.12 (2009): 2179-2195.

[10] Ge, Junfeng, Yupin Luo, and Gyomei Tei., “Real-time pedestrian detection and tracking at nighttime
for driver-assistance systems,” Intelligent Transportation Systems, IEEE Transactions on 10.2 (2009):
283-298.

[11] Hiromoto, Masayuki, and Ryusuke Miyamoto. “Hardware architecture for high-accuracy real-time
pedestrian detection with CoHOG features,” Computer Vision Workshops (ICCV Workshops), 2009
IEEE 12th International Conference on. IEEE, 2009.

19

[12] Benenson, Rodrigo, Markus Mathias, Radu Timofte, and Luc Van Gool. “Pedestrian detection at 100
frames per second,” In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pp. 2903-2910. IEEE, 2012.

[13] Andreas Geiger and Philip Lenz and Raquel Urtasun, ”Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite,” Conference on Computer Vision and PatternRecognition (CVPR),
2012.

[14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro and Evan Shelhamer., “cuDNN: Efficient Primitives for Deep Learning”,
http://arxiv.org/abs/1410.0759,

20

