## Introduction of Computer Vision Benchmark for Autonomous Driving

Automotive Cyber-Physical Systems Cheng-Yang Fu 01/04/2015

• Localization, Path Planning, and Obstacle avoidance





Heavy usage of Valodyne and detailed Maps

### 3D Laserscanner



May 2014 Embedded Vision Summit Keynote Presentation: "Self-Driving Cars," Nathaniel Fairfield, Google

Heavy usage of Valodyne and detailed Maps



May 2014 Embedded Vision Summit Keynote Presentation: "Self-Driving Cars," Nathaniel Fairfield, Google

#### **Do we have cheaper solutions?**



### scanner



May 2014 Embedded Vision Summit Keynote Presentation: "Self-Driving Cars," Nathaniel Fairfield, Google

### KITTI Vision Benchmark Suite

Karlsruhe Institute of Technology (KIT) and Toyota Technological Institute at Chicago (TTI-C)

- **Goal** : Autonomous driving cheap sensors
- Problem for Computer vision
  - Stereo, optical flow, Visual Odometry







### KITTI Vision Benchmark Suite

Karlsruhe Institute of Technology (KIT) and Toyota Technological Institute at Chicago (TTI-C)

- Goal : Autonomous driving cheap sensors
- Problem for Computer vision
  - Stereo, optical flow, Visual Odometry
  - Object Detection, Recognition, and Tracking





### KITTI Vision Benchmark Suite

Karlsruhe Institute of Technology (KIT) and Toyota Technological Institute at Chicago (TTI-C)

- Goal : Autonomous driving cheap sensors
- Problem for Computer vision
  - Stereo, optical flow, Visual Odometry
  - Object Detection, Recognition, and Tracking
  - scene Understanding





### KITTI Vision Benchmark : Data Collection

- Two stereo rigs(1392x512 pixels, 54 cm , 90° opening)
- Velodyne laser scanner, GPS +IMU
- 6 hours at 10 frame per second



### Annotation

• 3D object labels, Occlusion labels



## Evaluation



#### Welcome to the KITTI Vision Benchmark Suite!

We take advantage of our <u>autonomous driving platform Annieway</u> to develop novel challenging real-world computer vision benchmarks. Our tasks of interest are: stereo, optical flow, visual odometry, 3D object detection and 3D tracking. For this purpose, we equipped a standard station wagon with two high-resolution color and grayscale video cameras. Accurate ground truth is provided by a Velodyne laser scanner and a GPS localization system. Our datsets are captured by driving around the mid-size city of <u>Karlsruhe</u>, in rural areas and on highways. Up to 15 cars and 30 pedestrians are visible per image. Besides providing all data in raw format, we extract benchmarks for each task. For each of our benchmarks, we also provide an evaluation metric and this evaluation website. Preliminary experiments show that methods ranking high on established benchmarks such as <u>Middlebury</u> perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias and complement existing benchmarks by providing real-world benchmarks with novel difficulties to the community.



#### http://www.cvlibs.net/datasets/kitti/index.php

## 3D Reconstruction

**Goal**: given **2 cameras** mounted on top of the car, reconstruct the environment in 3D.





## Stereo

- Input Data : Stereo Images
- Output : Depth



#### **Stereo Evaluation**

| Rank                | Method                                | Setting                 | Code        | Out-Noc            | Out-All     | Avg-Noc      | Avg-All     | Density       | Runtime       | Environment                                     | Compare    |
|---------------------|---------------------------------------|-------------------------|-------------|--------------------|-------------|--------------|-------------|---------------|---------------|-------------------------------------------------|------------|
| 1                   | Displets                              |                         | <u>code</u> | 2.47 %             | 3.27 %      | 0.7 px       | 0.9 px      | 100.00 %      | 265 s         | >8 cores @ 3.0 Ghz (Matlab + C/C++)             |            |
| F. Gune             | y and A. Geiger:                      | Displets: F             | lesolvin    | g Stereo Ar        | nbiguities  | using Objec  | t Knowled   | ge. Confere   | nce on Comp   | outer Vision and Pattern Recognition (CVPR) 201 | 15.        |
| 2                   | MC-CNN                                |                         |             | 2.61 %             | 3.84 %      | 0.8 px       | 1.0 px      | 100.00 %      | 100 s         | Nvidia GTX Titan (CUDA, Lua/Torch7)             |            |
| Anonym              | ous submission                        |                         |             |                    |             |              | 4           |               | · · · ·       |                                                 | ]          |
| 3                   | SPS-StFl                              | ₽Ж                      |             | 2.83 %             | 3.64 %      | 0.8 px       | 0.9 px      | 100.00 %      | 35 s          | 1 core @ 3.5 Ghz (C/C++)                        |            |
| K. Yama             | aguchi, D. McAlle                     | ster and R              | Urtasu      | n: Efficient       | Joint Seg   | mentation,   | Occlusion   | Labeling, St  | tereo and Flo | ow Estimation. ECCV 2014.                       | 1          |
| 4                   | VC-SF                                 | ₽₽                      |             | 3.05 %             | 3.31 %      | 0.8 px       | 0.8 px      | 100.00 %      | 300 s         | 1 core @ 2.5 Ghz (C/C++)                        |            |
| C. Voge<br>Notes ir | l, S. Roth and K.<br>n, Computer Scie | Schindler:<br>nce 2014. | View-C      | onsistent 3        | D Scene Fl  | ow Estimat   | ion over M  | ultiple Fram  | es. Proceed   | ings of European Conference on Computer Visio   | n. Lecture |
| 5                   | OSF                                   | <b>-</b>                | <u>code</u> | 3.28 %             | 4.07 %      | 0.8 px       | 0.9 px      | 99.98 %       | 50 min        | 1 core @ 3.0 Ghz (Matlab + C/C++)               |            |
| M. Men              | ze and A. Geiger:                     | : Object Sc             | ene Flo     | w for Autor        | nomous Ve   | hicles. Conf | erence on   | Computer \    | /ision and Pa | ttern Recognition (CVPR) 2015.                  |            |
| 6                   | CoR                                   |                         |             | 3.30 %             | 4.10 %      | 0.8 px       | 0.9 px      | 100.00 %      | 6 s           | 6 cores @ 3.3 Ghz (Matlab + C/C++)              |            |
| A. Chak             | rabarti, Y. Xiong                     | , S. Gortle             | r and T.    | Zickler: Lo        | w-level Vi  | sion by Con  | sensus in a | a Spatial Hie | erarchy of Re | gions. CVPR 2015.                               | 1          |
| 7                   | SPS-St                                |                         | <u>code</u> | 3.39 %             | 4.41 %      | 0.9 px       | 1.0 px      | 100.00 %      | 2 s           | 1 core @ 3.5 Ghz (C/C++)                        |            |
| K. Yama             | aguchi, D. McAlle                     | ester and R             | Urtasu      | n: Efficient       | t Joint Seg | mentation,   | Occlusion   | Labeling, St  | tereo and Flo | ow Estimation. ECCV 2014.                       | 1          |
| 8                   | PCBP-SS                               |                         |             | 3.40 %             | 4.72 %      | 0.8 px       | 1.0 px      | 100.00 %      | 5 min         | 4 cores @ 2.5 Ghz (Matlab + C/C++)              |            |
| K. Yama             | aguchi, D. McAlle                     | ester and R             | Urtasu      | n: <u>Robust /</u> | Nonocular   | Epipolar Flo | w Estimat   | ion. CVPR 2   | 013.          |                                                 | 1          |
| 9                   | DDS-SS                                |                         |             | 3.83 %             | 4.59 %      | 0.9 px       | 1.0 px      | 100.00 %      | 1 min         | 1 core @ 2.5 Ghz (Matlab + C/C++)               |            |
| D. Wei,             | C. Liu and W. Fr                      | eeman: <u>A l</u>       | Data-dri    | ven Regula         | rization M  | odel for Ste | reo and Fl  | ow. 3DTV-C    | onference, 2  | 014 International Conference on 2014.           | 1          |
| 10                  | StereoSLIC                            |                         |             | 3.92 %             | 5.11 %      | 0.9 px       | 1.0 px      | 99.89 %       | 2.3 s         | 1 core @ 3.0 Ghz (C/C++)                        |            |
| K. Yama             | aguchi, D. McAlle                     | ster and R              | Urtasu      | n: <u>Robust /</u> | Nonocular   | Epipolar Flo | w Estimat   | ion. CVPR 2   | 013.          |                                                 | 1          |

## Displets

### Displets: Resolving Stereo Ambiguities using Object Knowledge (CVPR 2015)



3D Warehouse Model 35000 faces



## **Optical Flow**

- Input Data : Two Temporally Adjacent Images
- Output : Depth



### **Optical Flow Evaluation**

This table ranks general optical flow methods, performing a full 2D search, as compared to the motion stereo methods below.

| Rank               | Method                               | Setting     | Code                  | Out-Noc           | Out-All         | Avg-Noc     | Avg-All    | Density       | Runtime          | Environment                                   | Compare       |
|--------------------|--------------------------------------|-------------|-----------------------|-------------------|-----------------|-------------|------------|---------------|------------------|-----------------------------------------------|---------------|
| 1                  | VC-SF                                | ďð æ        |                       | 2.72 %            | 4.84 %          | 0.8 px      | 1.3 px     | 100.00 %      | 300 s            | 1 core @ 2.5 Ghz (Matlab + C/C++)             |               |
| C. Voge<br>Notes i | el, S. Roth and P<br>n, Computer Sci | C. Schindle | er: <u>View</u><br>4. | -Consisten        | t 3D Scene      | Flow Estin  | mation ove | er Multiple F | rames. Procee    | dings of European Conference on Computer Visi | on. Lecture   |
| 2                  | SPS-StFL                             | <u>89 X</u> |                       | 2.82 %            | 5.61 %          | 0.8 px      | 1.3 px     | 100.00 %      | 35 s             | 1 core @ 3.5 Ghz (C/C++)                      |               |
| K. Yam             | aguchi, D. McAl                      | lester and  | R. Urta               | asun: Effici      | ent Joint S     | Segmentati  | on, Occlu  | sion Labelin  | g, Stereo and F  | Flow Estimation. ECCV 2014.                   |               |
| 3                  | SPS-FL                               | X           |                       | 3.38 %            | 10.06 %         | 0.9 px      | 2.9 px     | 100.00 %      | 11 s             | 1 core @ 3.5 Ghz (C/C++)                      |               |
| K. Yam             | aguchi, D. McAl                      | lester and  | R. Urta               | asun: Effici      | ent Joint S     | Segmentati  | on, Occlu  | sion Labelin  | g, Stereo and F  | Flow Estimation. ECCV 2014.                   |               |
| 4                  | <u>OSF</u>                           | )<br>TT     | <u>code</u>           | 3.47 %            | 6.34 %          | 1.0 px      | 1.5 px     | 100.00 %      | 50 min           | 1 core @ 3.0 Ghz (Matlab + C/C++)             |               |
| M. Men             | ze and A. Geige                      | r: Object   | Scene F               | low for Au        | tonomous        | Vehicles. ( | Conference | e on Compu    | ter Vision and I | Pattern Recognition (CVPR) 2015.              |               |
| 5                  | PR-Sf+E                              | ďď          |                       | 3.57 %            | 7.07 %          | 0.9 px      | 1.6 px     | 100.00 %      | 200 s            | 4 cores @ 3.0 Ghz (Matlab + C/C++)            |               |
| C. Voge            | el, S. Roth and H                    | C. Schindle | er: <u>Piec</u>       | ewise Rigio       | Scene Flo       | w. Interna  | tional Cor | ference on    | Computer Visio   | on (ICCV) 2013.                               |               |
| 6                  | PCBP-Flow                            | ×           |                       | 3.64 %            | 8.28 %          | 0.9 px      | 2.2 px     | 100.00 %      | 3 min            | 4 cores @ 2.5 Ghz (Matlab + C/C++)            |               |
| K. Yam             | aguchi, D. McAl                      | lester and  | R. Urta               | asun: <u>Robu</u> | st Monocul      | ar Epipola  | Flow Esti  | mation. CV    | PR 2013.         |                                               |               |
| 7                  | PR-Sceneflow                         | ďð          |                       | 3.76 %            | 7.39 %          | 1.2 px      | 2.8 px     | 100.00 %      | 150 sec          | 4 core @ 3.0 Ghz (Matlab + C/C++)             |               |
| C. Voge            | el, S. Roth and H                    | C. Schindle | er: <u>Piec</u>       | ewise Rigio       | Scene Flo       | w. Interna  | tional Cor | ference on    | Computer Visio   | on (ICCV) 2013.                               |               |
| 8                  | MotionSLIC                           | ×           |                       | 3.91 %            | 10.56 %         | 0.9 px      | 2.7 px     | 100.00 %      | 11 s             | 1 core @ 3.0 Ghz (C/C++)                      |               |
| K. Yam             | aguchi, D. McAl                      | lester and  | R. Urta               | asun: <u>Robu</u> | st Monocul      | ar Epipola  | Flow Esti  | mation. CV    | PR 2013.         |                                               |               |
| 9                  | PPR-Flow                             |             |                       | 5.76 %            | 10.57 %         | 1.3 px      | 2.9 px     | 100.00 %      | 800 s            | 1 core @ 3.5 Ghz (Matlab + C/C++)             |               |
| Anonym             | nous submission                      |             |                       |                   |                 |             |            |               |                  |                                               |               |
| 10                 | NLTGV-SC                             |             |                       | 5.93 %            | 11 <b>.96</b> % | 1.6 px      | 3.8 px     | 100.00 %      | 16 s             | GPU @ 2.5 Ghz (Matlab + C/C++)                |               |
| R. Ranf            | tl, K. Bredies a                     | nd T. Pock  | : Non-L               | ocal Total        | Generalize      | ed Variatio | n for Opti | cal Flow Est  | imation. Proce   | edings of the 13th European Conference on Con | nputer Vision |

2014.

# VC-SF

View-Consistent 3D Scene Flow Estimation

over Multiple Frames , ECCV 2014 
 Error
 Out-Noc
 Out-All
 Avg-Noc
 Avg-All

 2 pixels
 3.52 %
 5.25 %
 0.5 px
 0.7 px

 3 pixels
 2.24 %
 2.81 %
 0.5 px
 0.7 px

 4 pixels
 1.84 %
 2.38 %
 0.5 px
 0.7 px

 5 pixels
 1.33 %
 1.89 %
 0.5 px
 0.7 px

 This table as LaTeX



10 I CI IC I IC I I I



# Odometry:motivation

- Localization is crucial for autonomous systems
- GPS has limitations in terms of **reliability and availability**
- Place recognition techniques use image features or depth maps and a database of previously collected images



# Odometry:motivation

• Use visual input to localize a vehicle



## Visual Odometry



[M. Brubaker, A. Geiger and R. Urtasun, CVPR13 best paper runner up award]

## Visual Odometry



[M. Brubaker, A. Geiger and R. Urtasun, CVPR13 best paper runner up award]

| Rank                        | Method                                              | Setting                                      | Code                        | Translation                                       | Rotation                                                          | Runtime                                     | Environment                                                                                        | Compare |
|-----------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|---------|
| 1                           | V-LOAM                                              |                                              |                             | 0.75 %                                            | 0.0018 [deg/m]                                                    | 0.3 s                                       | 4 cores @ 2.5 Ghz (C/C++)                                                                          |         |
| J. Zhang an                 | d S. Singh: <u>Visual-lida</u>                      | ar Odometry and                              | Mapping: Lov                | w- rift, Robust, and Fas                          | st. IEEE International Conferen                                   | nce on Robotics and                         | Automation(ICRA) 2015.                                                                             |         |
| 2                           | LOAM                                                | ::                                           | code                        | 0.88 %                                            | 0.0022 [deg/m]                                                    | 1.0 s                                       | 2 cores @ 2.5 Ghz (C/C++)                                                                          |         |
| J. Zhang an                 | d S. Singh: LOAM: Lid                               | ar Odometry and                              | Mapping in                  | Real-time. Robotics: So                           | cience and Systems Conference                                     | e (RSS) 2014.                               |                                                                                                    |         |
| 3                           | SOFT                                                | ďď                                           |                             | 1.03 %                                            | 0.0029 [deg/m]                                                    | 0.1 s                                       | 2 cores @ 2.5 Ghz (C/C++)                                                                          |         |
| Anonymous                   | submission                                          |                                              |                             |                                                   |                                                                   |                                             |                                                                                                    |         |
| 4                           | cv4xv1-sc                                           | Ъŏ                                           |                             | 1.09 %                                            | 0.0029 [deg/m]                                                    | 0.145 s                                     | GPU @ 3.5 Ghz (C/C++)                                                                              |         |
| Anonymous                   | submission                                          |                                              |                             |                                                   |                                                                   |                                             |                                                                                                    |         |
| 5                           | DEMO                                                | ***                                          | code                        | 1.14 %                                            | 0.0049 [deg/m]                                                    | 0.1 s                                       | 4 cores @ 2.5 Ghz (C/C++)                                                                          |         |
| J. Zhang, M                 | . Kaess and S. Singh:                               | Real-time Depth                              | Enhanced M                  | onocular Odometry. IEI                            | EE/RSJ International Conferen                                     | ce on Intelligent Rol                       | oots and Systems (IROS) 2014.                                                                      |         |
| 6                           | MEL                                                 | ďď                                           |                             | 1.30 %                                            | 0.0030 [deg/m]                                                    | 0.1 s                                       | 1 core @ 2.2 Ghz (C/C++)                                                                           |         |
| H. Badino, /<br>H. Badino a | A. Yamamoto and T. I<br>nd T. Kanade: <u>A Heac</u> | Kanade: <u>Visual Oc</u><br>I-Wearable Short | ometry by A<br>Baseline Ste | Aulti-frame Feature Int<br>reo System for the Sim | egration. First International V<br>nultaneous Estimation of Struc | Vorkshop on Compute<br>ture and Motion. IAP | er Vision for Autonomous Driving at ICCV 2013.<br>PR Conference on Machine Vision Application 2011 |         |
| 7                           | TLBBA                                               | ďď                                           |                             | 1.36 %                                            | 0.0038 [deg/m]                                                    | 0.1 s                                       | 1 Core @2.8GHz (C/C++)                                                                             |         |
| W. Lu, Z. Xi                | iang and J. Liu: <u>High-</u>                       | performance visu                             | al odometry                 | with two- stage local l                           | binocular BA and GPU. Intellig                                    | ent Vehicles Sympos                         | ium (IV), 2013 IEEE 2013.                                                                          |         |
| 8                           | 2FO-CC                                              | ďď                                           |                             | 1.37 %                                            | 0.0035 [deg/m]                                                    | 0.1 s                                       | 1 core @ 3.0 Ghz (C/C++)                                                                           |         |
| I. Krešo and                | S. Šegvić: Improving                                | the Egomotion E                              | stimation by                | Correcting the Calibra                            | tion Bias. VISAPP 2015.                                           |                                             |                                                                                                    |         |
| 9                           | <u>VoBa</u>                                         | 66                                           |                             | 1.46 %                                            | 0.0030 [deg/m]                                                    | 0.1 s                                       | 1 core @ 2.0 Ghz (C/C++)                                                                           |         |
| 10                          | SSLAM                                               | ЪХ                                           |                             | 1.57 %                                            | 0.0044 [deg/m]                                                    | 0.5 s                                       | 8 cores @ 3.5 Ghz (C/C++)                                                                          |         |

F. Bellavia, M. Fanfani, F. Pazzaglia and C. Colombo: Robust Selective Stereo SLAM without Loop Closure and Bundle Adjustment. ICIAP (1) 2013.

Sequence 11



Sequence 12



#### Sequence 15





## Detection

- Car, Pedestrian, Cyclist detection
- Object Detection and Orientation Estimation







#### <u>Car</u>

| Nalik                                                                       | Method                                                                                                                                                                                       | Setting                                     | Code                                        | Moderate                                                            | Easy                                                                              | Hard                                                                           | Runtime                                                                               | Environment                                                                                                                                                                | Compare         |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1                                                                           | <u>V C</u>                                                                                                                                                                                   |                                             |                                             | 85.74 %                                                             | 83.63 %                                                                           | <b>76.71</b> %                                                                 | 15 s                                                                                  | GPU @ 2.5 Ghz (C/C++)                                                                                                                                                      |                 |
| 2                                                                           | <u>DeepInsight</u>                                                                                                                                                                           |                                             |                                             | 84.40 %                                                             | 84.59 %                                                                           | 76.09 %                                                                        | 2 s                                                                                   | >8 core @ 2.5 Ghz (C/C++)                                                                                                                                                  |                 |
| 3                                                                           | Regionlets                                                                                                                                                                                   |                                             |                                             | 76.45 %                                                             | 84.75 %                                                                           | 59.70 %                                                                        | 1 s                                                                                   | >8 cores @ 2.5 Ghz (C/C++)                                                                                                                                                 |                 |
| X. Wang<br>C. Long,<br>2014.                                                | , M. Yang, S. Zhu and<br>X. Wang, G. Hua, M                                                                                                                                                  | d Y. Lin: <u>Rea</u><br>. Yang and Y        | gionlets f<br>Y. Lin: <u>Ac</u>             | for Generic Ob<br>ccurate Object                                    | ject Detection<br>Detection w                                                     | on. Internation                                                                | nal Conference<br>Relaxation and F                                                    | on Computer Vision 2013.<br>Regionlets Relocalization. Asian Conference on C                                                                                               | Computer Vision |
| 4                                                                           | <u>3DVP</u>                                                                                                                                                                                  |                                             |                                             | 75.77 %                                                             | 87.46 %                                                                           | 65.38 %                                                                        | 40 s                                                                                  | 8 cores @ 3.5 Ghz (Matlab + C/C++)                                                                                                                                         |                 |
| Y. Xiang<br>2015.                                                           | , W. Choi, Y. Lin and                                                                                                                                                                        | S. Savarese                                 | e: <u>Data-D</u>                            | riven 3D Voxe                                                       | Patterns for                                                                      | Object Cate                                                                    | gory Recognition                                                                      | n. IEEE Conference on Computer Vision and Patt                                                                                                                             | ern Recognition |
| 5                                                                           | SubCat                                                                                                                                                                                       |                                             | <u>code</u>                                 | 75.46 %                                                             | 84.14 %                                                                           | 59.71 %                                                                        | 0.7 s                                                                                 | 6 cores @ 2.5 Ghz (Matlab + C/C++)                                                                                                                                         |                 |
| E. Ohn-E                                                                    | Bar and M. Trivedi: L                                                                                                                                                                        | earning to D                                | etect Ve                                    | hicles by Clust                                                     | ering Appea                                                                       | ance Patterr                                                                   | s. T-ITS 2015.                                                                        |                                                                                                                                                                            |                 |
|                                                                             | ~~~                                                                                                                                                                                          |                                             |                                             | 74 30 %                                                             | 85.03 %                                                                           | 59.48 %                                                                        | 0.3 s                                                                                 | 4 cores @ 2.5 Gbz (Matlab + C/C++)                                                                                                                                         |                 |
| 6                                                                           | 55                                                                                                                                                                                           |                                             |                                             | 74.30 /0                                                            |                                                                                   |                                                                                |                                                                                       | feores e zis one (mattab - er e - )                                                                                                                                        |                 |
| 6<br>Anonyme                                                                | ous submission                                                                                                                                                                               |                                             |                                             | 74.30 %                                                             |                                                                                   |                                                                                | i                                                                                     |                                                                                                                                                                            |                 |
| 6<br>Anonymo<br>7                                                           | ous submission<br>AOG                                                                                                                                                                        |                                             | <u>code</u>                                 | 71.88 %                                                             | 84.36 %                                                                           | 59.27 %                                                                        | 3 s                                                                                   | 4 cores @ 2.5 Ghz (Matlab)                                                                                                                                                 |                 |
| 6<br>Anonymo<br>7<br>3. Li, T.                                              | ous submission<br><u>AOG</u><br>Wu and S. Zhu: <u>Inte</u>                                                                                                                                   | grating Cont                                | code<br>text and                            | 71.88 %<br>Occlusion for (                                          | 84.36 %<br>Car Detection                                                          | 59.27 %<br>by Hierarch                                                         | 3 s<br>ical And-Or Mod                                                                | 4 cores @ 2.5 Ghz (Matlab)<br>el. ECCV 2014.                                                                                                                               |                 |
| 6<br>Anonymo<br>7<br>3. Li, T.<br>8                                         | <u>SS</u><br>ous submission<br><u>AOG</u><br>Wu and S. Zhu: <u>Inte</u><br><u>SVM-Res</u>                                                                                                    | grating Cont                                | code<br>text and                            | 71.88 %<br>Occlusion for (<br>67.49 %                               | 84.36 %<br>Car Detection<br>78.11 %                                               | 59.27 %<br>n by Hierarch<br>54.28 %                                            | 3 s<br>ical And-Or Mod<br>10 s                                                        | 4 cores @ 2.5 Ghz (Matlab)<br>el. ECCV 2014.<br>4 cores @ 2.5 Ghz (Matlab)                                                                                                 |                 |
| 6<br>Anonymo<br>7<br>3. Li, T.<br>8<br>Anonymo                              | <u>SS</u><br>ous submission<br><u>AOG</u><br>Wu and S. Zhu: <u>Inte</u><br><u>SVM-Res</u><br>ous submission                                                                                  | grating Cont                                | code<br>text and                            | 71.88 %<br>Occlusion for (<br>67.49 %                               | 84.36 %<br>Car Detection<br>78.11 %                                               | 59.27 %<br>1 by Hierarch<br>54.28 %                                            | 3 s<br>ical And-Or Mod<br>10 s                                                        | 4 cores @ 2.5 Ghz (Matlab)<br>el. ECCV 2014.<br>4 cores @ 2.5 Ghz (Matlab)                                                                                                 |                 |
| 6<br>Anonymo<br>7<br>3. Li, T.<br>8<br>Anonymo<br>9                         | <u>SS</u><br>ous submission<br><u>AOG</u><br>Wu and S. Zhu: <u>Inte</u><br><u>SVM-Res</u><br>ous submission<br><u>SubCat</u>                                                                 | grating Cont                                | code<br>text and                            | 71.88 %<br>Occlusion for<br>67.49 %<br>66.32 %                      | 84.36 %<br>Car Detection<br>78.11 %<br>81.94 %                                    | 59.27 %<br>1 by Hierarch<br>54.28 %<br>51.10 %                                 | 3 s<br>ical And-Or Mod<br>10 s<br>0.3 s                                               | 4 cores @ 2.5 Ghz (Matlab)<br><u>el</u> . ECCV 2014.<br>4 cores @ 2.5 Ghz (Matlab)<br>6 cores @ 2.5 Ghz (Matlab + C/C++)                                                   |                 |
| 6<br>Anonymo<br>7<br>B. Li, T.<br>8<br>Anonymo<br>9<br>E. Ohn-E<br>E. Ohn-E | <u>SS</u><br>ous submission<br><u>AOG</u><br>Wu and S. Zhu: <u>Inte</u><br><u>SVM-Res</u><br>ous submission<br><u>SubCat</u><br>Bar and M. Trivedi: <u>L</u><br>Bar and M. Trivedi: <u>L</u> | grating Cont<br>earning to D<br>ast and Rob | code<br>text and<br>Detect Ve<br>ust Object | 71.88 %<br>Occlusion for (<br>67.49 %<br>66.32 %<br>hicles by Clust | 84.36 %<br>Car Detection<br>78.11 %<br>81.94 %<br>tering Appeal<br>sing Visual Su | 59.27 %<br>by Hierarch<br>54.28 %<br>51.10 %<br>rance Patterr<br>ibcategories. | 3 s<br>ical And-Or Mod<br>10 s<br>0.3 s<br>0.3 s<br>is. T-ITS 2015.<br>Computer Visio | 4 cores @ 2.5 Ghz (Matlab)<br><u>el</u> . ECCV 2014.<br>4 cores @ 2.5 Ghz (Matlab)<br>6 cores @ 2.5 Ghz (Matlab + C/C++)<br>n and Pattern Recognition Workshops Mobile Vis | ion 2014.       |

#### Regionlets for Generic Object Detection, ICCV 2013



## Tracking

• Car and Pedestrian classes



#### <u>CAR</u>

| Method                          | Setting                   | Code                 | MOTA                                 | MOTP                         | MT                                 | ML                          | IDS                | FRAG                  | Runtime                          | Environment                                                                                        | Compare                 |
|---------------------------------|---------------------------|----------------------|--------------------------------------|------------------------------|------------------------------------|-----------------------------|--------------------|-----------------------|----------------------------------|----------------------------------------------------------------------------------------------------|-------------------------|
| DP_MCF                          |                           | <u>code</u>          | 43.77 %                              | 78.49 %                      | 11.08 %                            | 39.45 %                     | 2738               | 3241                  | 0.01 s                           | 1 core @ 2.5 Ghz (Matlab)                                                                          |                         |
| H. Pirsiavash,<br>Recognition ( | D. Ramana<br>CVPR) 2011   | an and C             | . Fowlkes:                           | Globally-Opt                 | imal Greed                         | y Algorithm                 | s for Tr           | acking a              | Variable Num                     | ber of Objects. IEEE conference on Computer V                                                      | sion and Pattern        |
| <u>HM</u>                       | 0                         |                      | 41.56 %                              | 78.42 %                      | 7.74 %                             | 42.19 %                     | 12                 | 578                   | 0.01 s                           | 1 core @ 2.5 Ghz (Python)                                                                          |                         |
| <u>MCF</u>                      |                           |                      | 43.63 %                              | 78.32 %                      | 10.93 %                            | 40.06 %                     | 23                 | 591                   | 0.01 s                           | 1 core @ 2.5 Ghz (Python + C/C++)                                                                  |                         |
| L. Zhang, Y. L                  | i and R. Ne               | evatia: G            | ilobal data a                        | association 1                | for multi-ob                       | ject trackir                | ng using           | network               | flows. CVPR                      | ł.                                                                                                 |                         |
| <u>TBD</u>                      |                           | <u>code</u>          | 51.73 %                              | 78.47 %                      | 13.81 %                            | 34.60 %                     | 33                 | 540                   | 10 s                             | 1 core @ 2.5 Ghz (Matlab + C/C++)                                                                  |                         |
| A. Geiger, M.<br>H. Zhang, A. ( | Lauer, C. V<br>Geiger and | Wojek, C<br>R. Urtas | . Stiller and<br>sun: <u>Underst</u> | d R. Urtasun<br>tanding High | : <u>3D Traffic</u><br>1-Level Sem | Scene Under<br>antics by Me | erstand<br>odeling | ing from<br>Traffic F | Movable Plate<br>Patterns. Inter | forms. Pattern Analysis and Machine Intelligence<br>rnational Conference on Computer Vision (ICCV) | e (PAMI) 2014.<br>2013. |
| <u>SSP</u>                      |                           |                      | 53.85 %                              | 77.78 %                      | 21.24 %                            | 27.31 %                     | 7                  | 717                   | 0.6s                             | 1 core @ 2.7 Ghz (Python)                                                                          |                         |
| Anonymous su                    | ibmission                 |                      |                                      |                              |                                    |                             |                    |                       |                                  |                                                                                                    |                         |
| mbodSSP                         | 0                         |                      | 51.64 %                              | 77.67 %                      | 15.02 %                            | 29.89 %                     | 0                  | 708                   | 0.01 s                           | 1 core @ 2.7 Ghz (Python)                                                                          |                         |
| Anonymous su                    | Ibmission                 |                      |                                      |                              |                                    |                             |                    |                       | <u>.</u>                         |                                                                                                    |                         |
| <u>DCO</u>                      |                           | <u>code</u>          | 35.23 %                              | 74.50 %                      | 10.62 %                            | 33.84 %                     | 223                | 624                   | 0.03 s                           | 1 core @ >3.5 Ghz (Matlab + C/C++)                                                                 |                         |
| A. Andriyenko                   | , K. Schind               | ller and             | S. Roth: Dis                         | crete-Conti                  | nuous Optim                        | ization for                 | Multi-T            | arget Tra             | acking. CVPR                     | 2012.                                                                                              |                         |
| <u>CEM</u>                      |                           | <u>code</u>          | 47.81 %                              | 77.26 %                      | 14.42 %                            | 33.99 %                     | 125                | 401                   | 0.09 s                           | 1 core @ >3.5 Ghz (Matlab + C/C++)                                                                 |                         |
| A. Milan, S. R                  | oth and K.                | Schindle             | er: <u>Continuo</u>                  | us Energy M                  | inimization                        | for Multita                 | rget Tra           | cking. IE             | EE TPAMI 201                     | 4.                                                                                                 |                         |
| NOMT                            |                           |                      | 62.44 %                              | 78.32 %                      | 31.56 %                            | 27.77 %                     | 13                 | 159                   | 0.09 s                           | 16 core @ 2.5 Ghz (C++)                                                                            |                         |
| Anonymous su                    | Ibmission                 |                      |                                      | 4                            |                                    |                             |                    | .1                    |                                  |                                                                                                    |                         |
| NOMT-HM                         | 0                         |                      | 57.55 %                              | 78.79 %                      | 26.86 %                            | 30.50 %                     | 28                 | 253                   | 0.09 s                           | 8 cores @ 2.5 Ghz (Matlab + C/C++)                                                                 |                         |
| Anonymous su                    | Ibmission                 |                      | -                                    |                              | -                                  |                             |                    |                       |                                  |                                                                                                    |                         |
| <u>SSP*</u>                     |                           |                      | 66.67 %                              | 78.64 %                      | 40.52 %                            | 8.95 %                      | 194                | 977                   | 0.6 s                            | 1 core @ 2.7 Ghz (Python)                                                                          |                         |
| Anonymous su                    | ibmission                 |                      |                                      |                              |                                    |                             |                    |                       |                                  |                                                                                                    |                         |
| mbodSSP*                        | 0                         |                      | 66.66 %                              | 78.83 %                      | 34.29 %                            | 10.47 %                     | 117                | 894                   | 0.01 s                           | 1 core @ 2.7 Ghz (Python)                                                                          |                         |
|                                 |                           |                      |                                      |                              |                                    |                             | <u>.</u>           |                       | ·····                            |                                                                                                    |                         |

Anonymous submission

## Road Estimation

- UU Urban unmarked
- UM Urban Marked
- UMM Urban Multiple Marked lanes



This benchmark has been created in collaboration with <u>Jannik Fritsch</u> and Tobias Kuehnl from <u>Honda Research Institute Europe GmbH</u>. The road and lane estimation benchmark consists of 289 training and 290 test images. It contains three different categories of road scenes:

- uu urban unmarked (98/100)
- um urban marked (95/96)
- umm urban multiple marked lanes (96/94)

### Road Estimation Evaluation

| Rank               | Method                                 | Setting                   | Code                          | MaxF                        | AP                              | PRE                          | REC                       | FPR                       | FNR                               | Runtime                          | Environment                                                       | Compare       |
|--------------------|----------------------------------------|---------------------------|-------------------------------|-----------------------------|---------------------------------|------------------------------|---------------------------|---------------------------|-----------------------------------|----------------------------------|-------------------------------------------------------------------|---------------|
| 1                  | DDN                                    |                           |                               | 93.65 %                     | 88.55 %                         | 94.28 %                      | 93.03 %                   | 2.57 %                    | 6.97 %                            | 2 s                              | GPU @ 2.5 Ghz (Python + C/C++)                                    |               |
| R. Moh             | an: Deep Deconv                        | olutional N               | letwork                       | ks for Scen                 | e Parsing.                      | 2014.                        |                           | 4                         |                                   |                                  |                                                                   |               |
| 2                  | FusedCRF                               | ***                       |                               | 89.55 %                     | 80.00 %                         | 84.87 %                      | 94.78 %                   | 7.70 %                    | 5.22 %                            | 2 s                              | 1 core @ 2.5 Ghz (C/C++)                                          |               |
| Anonyn             | nous submission                        |                           | -                             |                             | •                               |                              |                           |                           |                                   |                                  |                                                                   |               |
| 3                  | RD_UM                                  |                           |                               | 89.36 %                     | 90.50 %                         | 88.80 %                      | 89.93 %                   | 5.17 %                    | 10.07 %                           | 1s                               | 1 core @ 2.5 Ghz (Python + C/C++)                                 |               |
| Anonyn             | nous submission                        |                           |                               | d                           |                                 | 4                            |                           | 4                         |                                   |                                  |                                                                   |               |
| 4                  | <u>CB</u>                              |                           |                               | 88.89 %                     | 82.17 %                         | 87.26 %                      | 90.58 %                   | 6.03 %                    | 9.42 %                            | 10 s                             | 1 core @ 2.5 Ghz (Python)                                         |               |
| 5                  | SPRAY                                  |                           |                               | 88.14 %                     | 91.24 %                         | 88.60 %                      | 87.68 %                   | 5.14%                     | 12.32 %                           | 45 ms                            | NVIDIA GTX 580 (Python + OpenCL)                                  |               |
| T. Kuel            | nnl, F. Kummert                        | and J. Frit               | sch: Sp                       | atial Ray F                 | eatures fo                      | r Real-Tim                   | e Ego-Lane                | Extractio                 | n. Proc. IE                       | EE Intellige                     | nt Transportation Systems 2012.                                   | 1             |
| 6                  | ProbBoost                              | ďď                        |                               | 87.48 %                     | 80.13 %                         | 85.02 %                      | 90.09 %                   | 7.23 %                    | 9.91 %                            | 2.5 min                          | >8 cores @ 3.0 Ghz (C/C++)                                        |               |
| G. Vito<br>Estimat | r, A. Victorino a<br>tion, Perception  | nd J. Ferre<br>and Contro | eira: <u>A p</u><br>ol of All | orobabilisti<br>I Terrain M | c distribut<br>obile Robo       | ion approa<br>ts on IEEE     | ch for the<br>Internation | classificat<br>al Confere | ion of urba<br>ence on Ro         | an roads in o<br>botics and      | complex environments. Workshop on Mode<br>Automation (ICRA) 2014. | lling,        |
| 7                  | NNP                                    | -<br>BB                   |                               | 87.31 %                     | 75.72 %                         | 85.59 %                      | 89.10 %                   | 6.84 %                    | 10.90 %                           | 5 s                              | 4 cores @ 2.5 Ghz (Matlab)                                        |               |
| Anonyn             | nous submission                        |                           | -                             |                             | •                               |                              |                           |                           |                                   |                                  |                                                                   |               |
| 8                  | <u>CN24</u>                            |                           |                               | 86.32 %                     | 89.19 %                         | 87.80 %                      | 84.89 %                   | 5.37 %                    | 15.11 %                           | 30 s                             | >8 cores @ 2.5 Ghz (C/C++)                                        |               |
| C. Brus<br>Procee  | t, S. Sickert, M.<br>dings of the 10th | Simon, E.<br>Internatio   | Rodner<br>onal Co             | and J. Der<br>nference o    | nzler: <u>Conv</u><br>n Compute | volutional P<br>er Vision Th | atch Netw<br>eory and A   | orks with                 | <u>Spatial Pri</u><br>Is, Berlin, | <u>or for Road</u><br>Germany, 1 | Detection and Urban Scene Understanding<br>1-14 March, 2015 2015. | . VISAPP 2015 |
| 9                  | GRES3D+VELO                            | <b>**</b> *               |                               | 85.43 %                     | 83.04 %                         | 82.69 %                      | 88.37 %                   | 8.43 %                    | 11.63 %                           | 60 ms                            | 4 cores @ 2.8 Ghz (C/C++)                                         |               |
| Anonyn             | nous submission                        | -                         |                               |                             |                                 |                              |                           |                           |                                   |                                  |                                                                   |               |
| 10                 | SPlane + BL                            | -<br>BB                   |                               | 85.23 %                     | 88.66 %                         | 83.43 %                      | 87.12 %                   | 7.89 %                    | 12.88 %                           | 2 s                              | 1 core @ 3.0 Ghz (C/C++)                                          |               |
| N Fine             | cke and   Foge                         | t: Block-M                | atching                       | Stereo wi                   | :<br>th Relaxed                 | Fronto-Pa                    | :<br>rallel ∆ssur         | notion IV                 | 2014                              |                                  |                                                                   | <u>.</u>      |

### DDN : Deep Deconvolutional Networks for Scene Parsing, arXiv



Figure 1. The architecture of our 7-layered deep network.

#### Deep Neural Networks



A SIMPLE NEURAL NETWORK



http://blog.peltarion.com/2014/06/22/deep-learning-and-deepneural-networks-in-synapse/ Deep Neural Networks : Why Popular ?

- · GPU
- Large scale Data



A SIMPLE NEURAL NETWORK



http://blog.peltarion.com/2014/06/22/deep-learning-and-deepneural-networks-in-synapse/

#### **Visualization of Results**

The following images illustrate the performance of the method qualitatively on a couple of test images. We first show results in the perspecti image, followed by evaluation in bird's eye view. Here, red denotes false negatives, blue areas correspond to false positives and green represer true positives.



This figure as: png

This figure as: png



This figure as: png

This figure as: png



This figure as: png

This figure as: png

## Reference

- KITTI website : <u>http://www.cvlibs.net/datasets/kitti/</u>
- First International Workshop on Computer Vision for Autonomous Driving
  - Visual Scene Understanding for Autonomous Systems
  - Raquel Urtasun, University of Toronto
- Regionlet
  - <u>http://www.xiaoyumu.com/project/kitti</u>
- DDN
  - <u>http://arxiv.org/pdf/1411.4101v1.pdf</u>