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For Next Generation Automobiles

Develop Vehicle Control Systems As CPS



Topics

• Overview of NextGen vehicle control system
o why is it CPS

• Development process for massive production
o how is it design and developed: EE system

• Technologies supporting NextGen vehicle control
o what enables it: real-time embedded systems

• Challenges with new technologies
o what are missing: parallelism, data processing
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Cyber-Physical Systems

• Cyber – computation, communication, and control that are discrete, logical, and switched

• Physical – natural and human-made systems governed by the laws of physics and operating in 
continuous time

• Cyber-Physical Systems – systems in which the cyber and physical systems are tightly 
integrated at all scales and levels

 Change from cyber merely appliquéd on physical

 Change from physical with COTS “computing as parts” mindset 

 Change from ad hoc to grounded, assured development

“CPS will transform how we interact with the physical world
just like the Internet transformed how we interact with one another.”

Source: Dr. Gill presentation at NSF CPS PI meeting
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REAR-PASSENGER FLAT-PANEL DISPLAYS

COMMAND SYSTEM WITH PCMCIA SLOT

GPS NAVIGATION

DVD PLAYER

LED LAMP CLUSTER

MEMORY SEAT/MRROR/STEER

HEAD-UP DISPLAYS

DASHBOARD-INSTRUMENT CLUSTER

TELEMATIC SYSTEM

CLIMATE CONTROL

ELECTRONC POWER-ROOF SYSTEM

RADAR SENSOR

TRANSMISSION CONTROL

COLLISION AVOIDANCE

ADAPTIVE CRUISE  CONTROL

HID HEADLAMP

AIR-BIG CONTROL AND 

SATELLITE CRASH SENSORS

ACTIVE STEERING

BODY CONTROL

SUSPENSION CONTROL

POWER WINDOWS

REMOTE KEYLESS ENTRY

SEAT MASSAGE/HVAC

TIRE-PRESSURE-MONTORING

ADAPTIVE BRAKE LIGHTS

PARKING SENSORS

REAR-VIEW CAMERA

BATTERY MANAGEMENT

POWER SEATS

THROTTLE CONTROL

ENGINE CONTROL UNIT

ELETROCHROMIC REAR-VIEW MIRRORS

CAR RADIO

ANTILOCK-BRAKING SYSTEM/ELECTRONIC-

STABILITY CONTROL

FOLDING DOOR MIRRORS

Controls in Typical Vehicle
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Vehicle Control System as CPS

Take me where I want to go –
Software algorithms + 

electronic
controls and actuators

What’s around me –
360°sensing(sensors 

+ “V2V”)

Where am I – GPS 
+ digital maps

Rear Vision System
– Object detection
– Far IR Capability

Short-
Range

Sensors
Long-Range

Scanning
Sensor

Forward Vision System
– Lane tracking
– Object detection
– Far IR Capability

Short-
Range
Sensors

Long-
Range

Sensors

Enhanced
Digital Map

System

Ultrasonic
Sensors

Ultrasonic
Sensors

Dedicated Short-Range
Communication + GPS (V2V)

Forward Vision System

LIDAR Image 
Sensor

AUTOSAR

DSRC

AVB Ethernet

CAN

FlexRay

MulticoreFPGA

Power-aware 
schedule

Fail-operational 
Arch

Integrated
Display

LED lighting
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Highly complex
• Large number of parts (>2500)
• From different sources
• Built differently
• Last long time (>10 yrs)

Diverse needs
• Expression and self 

image
• Create personal space
• Market and segment
• Operation environments

• Electrical and electronics replacing 
mechanic parts

• Standalone system to connected 

• Rely on driver to autonomous driving

• Fixed configuration to tailor for 
different uses



CPS Example: Electronic Stability Control
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With Technology Advancement

Next generation vehicles should be smart and adaptive

 Energy-efficient propulsion

 Vehicle connectivity – both in-vehicle and V2X

 Active safety – driving assistance to autonomy 

 Personalized – learn driving styles

 Self management of health
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Vehicle Control System: Complexity 
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50+ customer features
16 domains, 88 subsystems
Powertrain: 118 functions,  789 signal, 967 links 

70+ Electronic Control Units
10+ in-vehicle networks 
100+ sensors and actuators

 15 concurrent temporal development streams

 300 hierarchical subsystems

 Thousands of variant features

 Millions of product instances

 Tens-of-thousands of unique product variants

 Highly heterogeneous

 Mixed criticality, mixed intellectual property, 
mixed versions

 Affordable, reliable, safe, and exciting

 Across a large volume with many variations

 Last long time in all conditions – climate, traffic, maintenance, 
driving habits, ……



Vehicle Control System Development Process
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Multiple stages, multiple groups/organizations, 
multiple tools, multiple geographical locations



Functional Architecture Implementation Architecture Deployment  Architecture

Integration Area

Domain Area

…

•Production Line Models 
•Product Requirements*

FE FE
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Allocate 
FEs to Components

Algorithm Models
& Calibration Definition

Mechanizations

SW\HW  
Component Compositions

System  Design 
Model

•SWC
•HWC
•Networks

ECU

ECU ECU

1…n Networks

ECU Extracts

Allocate 
Components to ECUs

Integration Platform
Change Management

Diagnostic
Design

Network
Design

Core Arch
Design

Controller
Development

Logical View

Vehicle Application Architecture

System Data

•Hardware Connectivity 
•Power & Ground
•Merge with 3D data for wiring 
•Service Documentation

•Production Line Models 
•Customer Requirements* 

Vehicle Control System Engineering
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Feature-Oriented Productline Development
ACC

LDW
LXC

CTD
KLE

VRP

EngCyc
IMC DFI

ACC-v1

LXC-v3
KLEC-v2

VRP-v2

EngC-v1
DFI-v5

ACC-v3

LXC-v3
KLEC-v5

VRP-v1

EngC-v1
DFI-v3

CTD-v1

ACC-v1ACC-v1ACC-v1

LDW_v3LDW_v2LDW-v1

LCC-v1LCC-v1LXC-v1

CCC-v1CCC-v1CTD-v1

KCC-v1KCC-v1KLEC-v1

VCC-v1VCC-v1VRP-v1

ECC-v1ECC-v1EngC-v1

ICC-v1ICC-v1IMC-v1

DCC-v1DCC-v1DFI-v1
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Challenge: Software Implementation of Controls

• Different design principles and focuses 
o Code generation in commercial tools limited to small component

• Timing delays cause errors 
o Mismatch implementation and model

o Introduce timing jitters

o Non-determinism across different configurations

• Multitasking and multirate control
o Determine proper software tasks for control

o Determine proper schedule of software tasks

• More challenging – parallel programming and execution
o Resource sharing, data protection, synchronization, etc
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PID Example: Error Propagation in Software 

• There may be a correlation between sampling period and execution time

Per = 10,  wc completion time = 1~5 Per = 6,  wc completion time = 1~5
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ABS Example: Physical Variability Impact 
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ABS Example: Software Implementation Impact
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Standardization: AUTOSAR
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SW-C
(application software 
components)

VFB
(virtual functional bus)

RTE
(run-time environment)

BSW-M
(basic software modules)



AUTOSAR Interfaces – System Composition

3/25/2015 University of North Carolina visit 17

Components interact through ports:
• Sender-receiver:  SWC-SWC, 1-many,  async
• Client-server: SWC-BSW, many-1, sync

For Sender-Receiver ports:

 Initial value

 Queue length

 Explicit vs. implicit

 Acknowledgement

 Timeout

For Client-Server ports:

 Synchronous vs. asynchronous

 Timeout

 Queue length



SW Components and Runnables

• SW-Components

 atomic block with respect to mapping

 provided by one supplier
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SW-C 1

runnableA

runnableB

runnableC
BSW

RTE

SW-C 1

• Runnables

 atomic block with respect to execution

 attach to different OS tasks



Example: Front-Light Management (Distributed)
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AUTOSAR OS

Basic feature

• Configured and scaled statically

• Amenable to reasoning of real-time 
performance

• Provides a priority-based scheduling policy

• Provides protective functions at run-time 
(for memory, time, etc)

• Can run on low-end controllers and 
without external resources

OS Abstraction Layer 

• Define for co-existence of AUTOS OS and 
proprietary OS

ECU State Manager 

• starts/stops AUTOSAR OS

Interaction with RTE

• Map runnables of the same SW component 
to task(s)

• Share protection boundary among 
runnables of the same task

• Tasks and ISRs for basic SW scheduled by 
OS
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AUTOSAR Scheduling

• Two level, table-driven

• Used for static scheduling: all 
tasks are synchronized with 
alarms

 Alarms fixed once started

 Each table linked to one tick counter

• Defines expiry points

• Allow multiple table activated 
concurrently – compositional 
schedule

• Two types of schedule tables: one-
shot, repeated
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Runn
able

OS

RTE OS Task



AUTOSAR OS Configuration 

3/25/2015 University of North Carolina visit 22



OS Application

• A set of OS objects to 
form a functional unit

• Can be trusted or non-
trusted

• Objects of the same OS 
application can access 
each other
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Deployment View

ECU 1 – Lane keeping ECU

Left Sensor 

Component

ECU 2 – Sensor Compoents

Display and 

Controller 

components

ECU 3 – Displays & Controllers

AUTOSAR Stack
AUTOSAR Stack

AUTOSAR Stack

Flex Ray Bus

Basic Software Components

Application Components ECU

Legend

Detailed Deployment View

Right Sensor 

ComponentLane Keeping 

Application Component

Flex Ray Bus
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AUTOSAR Fault-Tolerant: E2E Protection

• Mitigate faults in 
E2E communication

• Defined a set of E2E 
profiles – non-
generated, 
deterministic code

• E2E library defines 
3 Profiles
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E2E Communication Profiles
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Safe E2E Communications
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Memory Protection

• Use OS-Applications: two variants
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Timing Protection

• Support specifying and verifying timing properties (period, latency, jitter, 
synchronization, execution time, deadline)

• Two implementation: BSW time service; RTE sync event
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ECU 1 ECU 2

OS Task, ECU 1

Pos 1

Pos 2

OS Task, ECU 2

Pos 1

Local Time TickLocal Time Tick

synchronized global time

Synchronization

Runnable

Runnable

Inter-

runnable 

variable

SW-C

Synchronization
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runnable 
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SW-C

Synchronization

Runnable

Runnable
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runnable 
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time sync protocol sync event



Program Flow Monitoring

• Focuses on SWC program flow faults 

• Two types: timely behavior; sequence of code blocks

• Use SWC ports and Watchdog Manager
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critical code block A;

call port p1;

critical code block B;

call port p2;

p1 p2

Wdg_alive(1) Wdg_alive(2)

Check if “1” 

arrived on time
Check if “2” 

arrived on time

Check if “2” 

is after “1”

RTE

SW-C

Watchdog 

Manager

Individual 
Supervision State 

Machine

Global
Supervision State 

Machine



AUTOSAR OS Scalability Class
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AUTOSAR Multicore OS
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Assumptions 

 Individual cores can be identified

 Cores share instruction set and data size

 Exceptions stay within a core

 Interrupts can be triggered on any core

 Equal access of memory (or segment) 

 No addition of cores after OS started, no 
shutdown/restart of individual cores

 No dynamic task assignment

Core organization: master - satellite

 Master: all BSW, wakeup/shutdown 
management

 Satellite: subset BSW only for CDD and SW-Cs

ECU State Manager on each core

 Synchronize startup, shutdown, sleep operation

A single configuration of  OS for all cores

 Each core runs a part or whole copy of OS



AUTOSAR Considered Multicore SW Architectures

• History: some options considered
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Multi-
processing

Same OS
MP Co-Processing

I/O
Processing

CPU
Farm

Single
Image 

MP

Multi
Instance 

MP

Dynamic
Affinity MP

Static
Affinity MP

RTE
Bridged 

MP

COM
Bridged 

MP

Same OS

on all cores
OS only on one core,

other cores are black boxes

One OS

per core

One OS

handles all cores

Tasks and IRQs

fixed to cores

Inter-Connection

on AR RTE level

Inter-Connection

on AR COM level

Interrupt

off-loading
distributed

calculations



AUTOSAR Multicore OS Scheduling

• Fixed priority-based schedule 
on each core

• Cores execute task 
independently

 Each core has its own 
schedule table(s)

• Task priorities on different 
cores are limited to local
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Multicore OS Startup

• Each core must have at least one OS Application

• Master-satellite can be cascade

• All cores start before StartOS command
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Multicore Timing Control

• Each core must have at least one 
counter from timer

• Multiple counters exist for OS 
Applications

• Counters can be on remote cores

• Synchronization among counters 
may be required

• Implementation is not specified
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Multicore Inter OS-Application Communicator (IOC)

• For communications between 
OS-Applications across cores or 
memory protection boundary

 In addition to Intra OS (via 
RTE) and Inter ECU (via COM)

 Accessed directly (not support) 
or through RTE (logic one, 
physical splitted)

 1:1 or N:1 (1:N requires RTE 
generating N 1:1, changed in 
4.2+)
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Mutual Exclusion Across Cores

• Spinlocks

 A busy-waiting mechanism polling the variables until available

 Used by tasks on different cores

 Priority-based scheduling on each core not affected

• Deadlock avoidance 

 Resolved using predefined access order: all cores follow the same order

 Controlled by LIFO policy
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Human Interface Strategy

Motorized Seat Belts
Collision Mitigation Braking

Rear Back-Up Camera

Lane Departure Warning

Forward Collision Alert

Adaptive Cruise / 

Full-Speed Range ACC

Aux Virtual Image Display (AVID)

Haptic Seat

Side Blind 

Zone Alert

Front Camera Functions

New Technology: Advanced Driver Assistance System (ADAS)
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Computing Challenges for ADAS

• Very high computation demands
o Image processing, complex math computation

o Fusing and cross-examining information from different sources

• Very large amount of data
o Fast and continuous sampling

o Many streams of inputs

• Under real-time and embedded constraints
o Source of information for critical controls (speed, steering, braking, etc)

o Key part of system safety (ASIL-D), but with a weak computing platform support (ASIL-B)

• Other business challenges
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Hardware Options
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Software Architecture Challenge: mixed-criticality

• Classified for each feature
o Forward collision avoidance – ASIL D

o Lane keeping – ASIL C

o Lane departure warning – ASIL A

• Different ASIL for functions in the same feature
o Object detection – ASIL B

o Video streaming – ASIL A

• ASIL may change in different modes during operation
o Back up: rear camera for monitoring and warning – ASIL C/D

o Normal driving: rear camera for monitoring – ASIL B 
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Software Architecture Challenge: virtualization

• Consider hypervisor

• Mixed different OSs to maintain 
independence of applications

• Different impl. strategies
o Pass-through/native virtualization

o Para-virtualization

• Some examples
o Research: KVM, Xen, OKL4

o Commercial: QNX, WindRiver, COQUOS, 
PikeOS, GH IntegrityOS, Coqos
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Software Architecture Challenge: memory management

• Performance depends more on memory
o Same for multicore and GPU

o Memory protection doesn’t help

• Data locality should be explored
o Cache, system memory, device memory

o Partition of memory into continuous regions

• Cache- and memory-locking
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Core 1

Core 2 Main 

Memory

Core 3

τi
5    4    3    2    1

Memory Bus

τj

τk

0x30000

mission functions

role functions

…

mod_00_fn_00

mod_00_fn_00

Task 1 functions

Task 2 functions

.text, .text_vle sections

9KB .lock_section



Programming

• Programming Model
o Data parallelism

o Task parallelism 

• Languages
o OpenCL

o CUDA

o OpenMP
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Other Issues

• Task synchronization

• Data coherence and consistency

• Processor power consumption and temperature
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Remarks

• Software development methods for large scale software for mass 
produced CPS are still not mature

• New applications post additional technical and business challenges

• Advanced hardware offers great potentials but also posts 
challenges

• Software architecture supporting predictable and analyzable 
vehicle controls is still evolving and requires further research
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END
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Interference Among Controls 

• Algorithms designed to run standalone

• Interferences of other controls through resource share causing more inconsistency 
(temporal and data)
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• Each line represents activation 
of a distinct control (a schedule)

• Running standalone, they all 
should be with regular pulses

• Diagram shows running on a 
shared controller without any 
protection (code-gen, flash, run)

• Observed extensive blocking (no 
pulse) and busy-processing 
(piggyback pulses)



Simulation Setup – Architecture Selection

• Test Scenario
o Host vehicle starts from 0 with 200 ft behind lead vehicle

o Lead vehicle moves with a predefined speed profile

• Task running synthetic workload 
o Tasks are not randomly generated (like most academic cases)

o To be filled with control algorithm after it is done

• Processor utilization should be maintained less than 70%
o For single core, implies sampling period 80 ms and more

3/25/2015 University of North Carolina visit 50



Performance With Single or Dual-Core

40 ms 80 ms
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Performance With Different Periods

Running on a resource restricted platform, pick 800 ms

If preserve control performance, pick 60 ms
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Performance With Different Synchronization

40 ms lock-free, wait-free 40 ms lock-based
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Performance Under Different Sync and Period
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