
Shige Wang

GENERAL MOTORS
GLOBAL RESEARCH & DEVELOPMENT

For Next Generation Automobiles

Develop Vehicle Control Systems As CPS

Topics

• Overview of NextGen vehicle control system
o why is it CPS

• Development process for massive production
o how is it design and developed: EE system

• Technologies supporting NextGen vehicle control
o what enables it: real-time embedded systems

• Challenges with new technologies
o what are missing: parallelism, data processing

3/25/2015 2University of North Carolina visit

Cyber-Physical Systems

• Cyber – computation, communication, and control that are discrete, logical, and switched

• Physical – natural and human-made systems governed by the laws of physics and operating in
continuous time

• Cyber-Physical Systems – systems in which the cyber and physical systems are tightly
integrated at all scales and levels

 Change from cyber merely appliquéd on physical

 Change from physical with COTS “computing as parts” mindset

 Change from ad hoc to grounded, assured development

“CPS will transform how we interact with the physical world
just like the Internet transformed how we interact with one another.”

Source: Dr. Gill presentation at NSF CPS PI meeting

3/25/2015 University of North Carolina visit 3

REAR-PASSENGER FLAT-PANEL DISPLAYS

COMMAND SYSTEM WITH PCMCIA SLOT

GPS NAVIGATION

DVD PLAYER

LED LAMP CLUSTER

MEMORY SEAT/MRROR/STEER

HEAD-UP DISPLAYS

DASHBOARD-INSTRUMENT CLUSTER

TELEMATIC SYSTEM

CLIMATE CONTROL

ELECTRONC POWER-ROOF SYSTEM

RADAR SENSOR

TRANSMISSION CONTROL

COLLISION AVOIDANCE

ADAPTIVE CRUISE CONTROL

HID HEADLAMP

AIR-BIG CONTROL AND

SATELLITE CRASH SENSORS

ACTIVE STEERING

BODY CONTROL

SUSPENSION CONTROL

POWER WINDOWS

REMOTE KEYLESS ENTRY

SEAT MASSAGE/HVAC

TIRE-PRESSURE-MONTORING

ADAPTIVE BRAKE LIGHTS

PARKING SENSORS

REAR-VIEW CAMERA

BATTERY MANAGEMENT

POWER SEATS

THROTTLE CONTROL

ENGINE CONTROL UNIT

ELETROCHROMIC REAR-VIEW MIRRORS

CAR RADIO

ANTILOCK-BRAKING SYSTEM/ELECTRONIC-

STABILITY CONTROL

FOLDING DOOR MIRRORS

Controls in Typical Vehicle

3/25/2015 University of North Carolina visit 4

Vehicle Control System as CPS

Take me where I want to go –
Software algorithms +

electronic
controls and actuators

What’s around me –
360°sensing(sensors

+ “V2V”)

Where am I – GPS
+ digital maps

Rear Vision System
– Object detection
– Far IR Capability

Short-
Range

Sensors
Long-Range

Scanning
Sensor

Forward Vision System
– Lane tracking
– Object detection
– Far IR Capability

Short-
Range
Sensors

Long-
Range

Sensors

Enhanced
Digital Map

System

Ultrasonic
Sensors

Ultrasonic
Sensors

Dedicated Short-Range
Communication + GPS (V2V)

Forward Vision System

LIDAR Image
Sensor

AUTOSAR

DSRC

AVB Ethernet

CAN

FlexRay

MulticoreFPGA

Power-aware
schedule

Fail-operational
Arch

Integrated
Display

LED lighting

3/25/2015 University of North Carolina visit 5

Highly complex
• Large number of parts (>2500)
• From different sources
• Built differently
• Last long time (>10 yrs)

Diverse needs
• Expression and self

image
• Create personal space
• Market and segment
• Operation environments

• Electrical and electronics replacing
mechanic parts

• Standalone system to connected

• Rely on driver to autonomous driving

• Fixed configuration to tailor for
different uses

CPS Example: Electronic Stability Control

3/25/2015 University of North Carolina visit 6

With Technology Advancement

Next generation vehicles should be smart and adaptive

 Energy-efficient propulsion

 Vehicle connectivity – both in-vehicle and V2X

 Active safety – driving assistance to autonomy

 Personalized – learn driving styles

 Self management of health

3/25/2015 7University of North Carolina visit

Vehicle Control System: Complexity

3/25/2015 8University of North Carolina visit

50+ customer features
16 domains, 88 subsystems
Powertrain: 118 functions, 789 signal, 967 links

70+ Electronic Control Units
10+ in-vehicle networks
100+ sensors and actuators

 15 concurrent temporal development streams

 300 hierarchical subsystems

 Thousands of variant features

 Millions of product instances

 Tens-of-thousands of unique product variants

 Highly heterogeneous

 Mixed criticality, mixed intellectual property,
mixed versions

 Affordable, reliable, safe, and exciting

 Across a large volume with many variations

 Last long time in all conditions – climate, traffic, maintenance,
driving habits, ……

Vehicle Control System Development Process

d
e

v
e

lo
p

m
e

n
t

p
ro

ce
ss

Requirements

Analysis

Control Dev

SW Design

Implementation

(RP vs. Target)

Diff. Equation,, State-

based formalism,

SDF, etc.

C/C++

Code Libraries

Ascet

SD
dSpace

Target-

Link

Natural language

Use-case diagram

Block diagram, etc.

Matlab

SL/SF

Rhapsody

Programming Env. (Tornado,

MS Visual Studio, etc)

Word

State-

mate

Continuous +

Discrete

UML, UML-Profile,

ADL (AADL, EAST-

EEA), AutoSAR, etcm
o

d
e

l
tr

a
n

sf
o

rm
a

ti
o

n

e
n

d
-t

o
-e

n
d

 t
o

o
l c

h
a

in

Excel DOORS

Math

emati

ca

tool Integrationmodel translation
/composition

3/25/2015 University of North Carolina visit 9

Multiple stages, multiple groups/organizations,
multiple tools, multiple geographical locations

Functional Architecture Implementation Architecture Deployment Architecture

Integration Area

Domain Area

…

•Production Line Models
•Product Requirements*

FE FE

So
ft

w
ar

e
H

ar
d

w
ar

e

Allocate
FEs to Components

Algorithm Models
& Calibration Definition

Mechanizations

SW\HW
Component Compositions

System Design
Model

•SWC
•HWC
•Networks

ECU

ECU ECU

1…n Networks

ECU Extracts

Allocate
Components to ECUs

Integration Platform
Change Management

Diagnostic
Design

Network
Design

Core Arch
Design

Controller
Development

Logical View

Vehicle Application Architecture

System Data

•Hardware Connectivity
•Power & Ground
•Merge with 3D data for wiring
•Service Documentation

•Production Line Models
•Customer Requirements*

Vehicle Control System Engineering

3/25/2015 University of North Carolina visit 10

Feature-Oriented Productline Development
ACC

LDW
LXC

CTD
KLE

VRP

EngCyc
IMC DFI

ACC-v1

LXC-v3
KLEC-v2

VRP-v2

EngC-v1
DFI-v5

ACC-v3

LXC-v3
KLEC-v5

VRP-v1

EngC-v1
DFI-v3

CTD-v1

ACC-v1ACC-v1ACC-v1

LDW_v3LDW_v2LDW-v1

LCC-v1LCC-v1LXC-v1

CCC-v1CCC-v1CTD-v1

KCC-v1KCC-v1KLEC-v1

VCC-v1VCC-v1VRP-v1

ECC-v1ECC-v1EngC-v1

ICC-v1ICC-v1IMC-v1

DCC-v1DCC-v1DFI-v1

3/25/2015 University of North Carolina visit 11

Challenge: Software Implementation of Controls

• Different design principles and focuses
o Code generation in commercial tools limited to small component

• Timing delays cause errors
o Mismatch implementation and model

o Introduce timing jitters

o Non-determinism across different configurations

• Multitasking and multirate control
o Determine proper software tasks for control

o Determine proper schedule of software tasks

• More challenging – parallel programming and execution
o Resource sharing, data protection, synchronization, etc

3/25/2015 University of North Carolina visit 12

PID Example: Error Propagation in Software

• There may be a correlation between sampling period and execution time

Per = 10, wc completion time = 1~5 Per = 6, wc completion time = 1~5

3/25/2015 University of North Carolina visit 13

ABS Example: Physical Variability Impact

3/25/2015 University of North Carolina visit 14

ABS Example: Software Implementation Impact

3/25/2015 University of North Carolina visit 15

Standardization: AUTOSAR

3/25/2015 University of North Carolina visit 16

SW-C
(application software
components)

VFB
(virtual functional bus)

RTE
(run-time environment)

BSW-M
(basic software modules)

AUTOSAR Interfaces – System Composition

3/25/2015 University of North Carolina visit 17

Components interact through ports:
• Sender-receiver: SWC-SWC, 1-many, async
• Client-server: SWC-BSW, many-1, sync

For Sender-Receiver ports:

 Initial value

 Queue length

 Explicit vs. implicit

 Acknowledgement

 Timeout

For Client-Server ports:

 Synchronous vs. asynchronous

 Timeout

 Queue length

SW Components and Runnables

• SW-Components

 atomic block with respect to mapping

 provided by one supplier

3/25/2015 18University of North Carolina visit

SW-C 1

runnableA

runnableB

runnableC
BSW

RTE

SW-C 1

• Runnables

 atomic block with respect to execution

 attach to different OS tasks

Example: Front-Light Management (Distributed)

3/25/2015 University of North Carolina visit 19

AUTOSAR OS

Basic feature

• Configured and scaled statically

• Amenable to reasoning of real-time
performance

• Provides a priority-based scheduling policy

• Provides protective functions at run-time
(for memory, time, etc)

• Can run on low-end controllers and
without external resources

OS Abstraction Layer

• Define for co-existence of AUTOS OS and
proprietary OS

ECU State Manager

• starts/stops AUTOSAR OS

Interaction with RTE

• Map runnables of the same SW component
to task(s)

• Share protection boundary among
runnables of the same task

• Tasks and ISRs for basic SW scheduled by
OS

3/25/2015 20University of North Carolina visit

AUTOSAR Scheduling

• Two level, table-driven

• Used for static scheduling: all
tasks are synchronized with
alarms

 Alarms fixed once started

 Each table linked to one tick counter

• Defines expiry points

• Allow multiple table activated
concurrently – compositional
schedule

• Two types of schedule tables: one-
shot, repeated

3/25/2015 21University of North Carolina visit

Runn
able

OS

RTE OS Task

AUTOSAR OS Configuration

3/25/2015 University of North Carolina visit 22

OS Application

• A set of OS objects to
form a functional unit

• Can be trusted or non-
trusted

• Objects of the same OS
application can access
each other

3/25/2015 23University of North Carolina visit

Deployment View

ECU 1 – Lane keeping ECU

Left Sensor

Component

ECU 2 – Sensor Compoents

Display and

Controller

components

ECU 3 – Displays & Controllers

AUTOSAR Stack
AUTOSAR Stack

AUTOSAR Stack

Flex Ray Bus

Basic Software Components

Application Components ECU

Legend

Detailed Deployment View

Right Sensor

ComponentLane Keeping

Application Component

Flex Ray Bus

3/25/2015 University of North Carolina visit 24

AUTOSAR Fault-Tolerant: E2E Protection

• Mitigate faults in
E2E communication

• Defined a set of E2E
profiles – non-
generated,
deterministic code

• E2E library defines
3 Profiles

3/25/2015 25University of North Carolina visit

E2E Communication Profiles

3/25/2015 University of North Carolina visit 26

Safe E2E Communications

3/25/2015 27University of North Carolina visit

Memory Protection

• Use OS-Applications: two variants

3/25/2015 28University of North Carolina visit

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

S
ta

n
d

a
rd

iz
e

d
In

te
fa

c
e

Memory

CPU

Supervisor

mode

OS-Application 1, trusted,

with protection enabled

CPU

User

mode

Non-trusted OS-Applications

SW-Cs are allocated to OS-Applications (1 or more)

OS-App 2 private

data

OS-App 1 private

data

Optional: shared

OS-App 1 data

(buffer used by

RTE for IPC)

OS-App n private

data

...

OS-App 2 private

code

OS-App n private

code

...

OS-App 1 private

code

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

S
ta

n
d

a
rd

iz
e

d
In

te
fa

c
e

Memory

CPU

Supervisor

mode

OS-Application 1, trusted,

with protection disabled

CPU

User

mode

Non-trusted OS-Applications, with protection enabled

SW-Cs are allocated to OS-Applications (1 or more)

OS-App 2 private

data

OS-App 1 private

data

Optional: shared

OS-App 1 data

(buffer used by

RTE for IPC)

OS-App n private

data

...

OS-App 2 private

code

OS-App n private

code

...

OS-App 1 private

code

Timing Protection

• Support specifying and verifying timing properties (period, latency, jitter,
synchronization, execution time, deadline)

• Two implementation: BSW time service; RTE sync event

3/25/2015 29University of North Carolina visit

ECU 1 ECU 2

OS Task, ECU 1

Pos 1

Pos 2

OS Task, ECU 2

Pos 1

Local Time TickLocal Time Tick

synchronized global time

Synchronization

Runnable

Runnable

Inter-

runnable

variable

SW-C

Synchronization

Runnable

Runnable

Inter-

runnable

variable

SW-C

Synchronization

Runnable

Runnable

Inter-

runnable

variable

SW-C

RTETimingEvent RTETimingEvent RTETimingEvent

synchronized RTE events

time sync protocol sync event

Program Flow Monitoring

• Focuses on SWC program flow faults

• Two types: timely behavior; sequence of code blocks

• Use SWC ports and Watchdog Manager

3/25/2015 30University of North Carolina visit

critical code block A;

call port p1;

critical code block B;

call port p2;

p1 p2

Wdg_alive(1) Wdg_alive(2)

Check if “1”

arrived on time
Check if “2”

arrived on time

Check if “2”

is after “1”

RTE

SW-C

Watchdog

Manager

Individual
Supervision State

Machine

Global
Supervision State

Machine

AUTOSAR OS Scalability Class

3/25/2015 University of North Carolina visit 31

AUTOSAR Multicore OS

3/25/2015 University of North Carolina visit 32

Assumptions

 Individual cores can be identified

 Cores share instruction set and data size

 Exceptions stay within a core

 Interrupts can be triggered on any core

 Equal access of memory (or segment)

 No addition of cores after OS started, no
shutdown/restart of individual cores

 No dynamic task assignment

Core organization: master - satellite

 Master: all BSW, wakeup/shutdown
management

 Satellite: subset BSW only for CDD and SW-Cs

ECU State Manager on each core

 Synchronize startup, shutdown, sleep operation

A single configuration of OS for all cores

 Each core runs a part or whole copy of OS

AUTOSAR Considered Multicore SW Architectures

• History: some options considered

3/25/2015 33University of North Carolina visit

Multi-
processing

Same OS
MP Co-Processing

I/O
Processing

CPU
Farm

Single
Image

MP

Multi
Instance

MP

Dynamic
Affinity MP

Static
Affinity MP

RTE
Bridged

MP

COM
Bridged

MP

Same OS

on all cores
OS only on one core,

other cores are black boxes

One OS

per core

One OS

handles all cores

Tasks and IRQs

fixed to cores

Inter-Connection

on AR RTE level

Inter-Connection

on AR COM level

Interrupt

off-loading
distributed

calculations

AUTOSAR Multicore OS Scheduling

• Fixed priority-based schedule
on each core

• Cores execute task
independently

 Each core has its own
schedule table(s)

• Task priorities on different
cores are limited to local

3/25/2015 34University of North Carolina visit

Multicore OS Startup

• Each core must have at least one OS Application

• Master-satellite can be cascade

• All cores start before StartOS command

3/25/2015 35University of North Carolina visit

Multicore Timing Control

• Each core must have at least one
counter from timer

• Multiple counters exist for OS
Applications

• Counters can be on remote cores

• Synchronization among counters
may be required

• Implementation is not specified

3/25/2015 36University of North Carolina visit

Multicore Inter OS-Application Communicator (IOC)

• For communications between
OS-Applications across cores or
memory protection boundary

 In addition to Intra OS (via
RTE) and Inter ECU (via COM)

 Accessed directly (not support)
or through RTE (logic one,
physical splitted)

 1:1 or N:1 (1:N requires RTE
generating N 1:1, changed in
4.2+)

3/25/2015 37University of North Carolina visit

Mutual Exclusion Across Cores

• Spinlocks

 A busy-waiting mechanism polling the variables until available

 Used by tasks on different cores

 Priority-based scheduling on each core not affected

• Deadlock avoidance

 Resolved using predefined access order: all cores follow the same order

 Controlled by LIFO policy

3/25/2015 38University of North Carolina visit

Human Interface Strategy

Motorized Seat Belts
Collision Mitigation Braking

Rear Back-Up Camera

Lane Departure Warning

Forward Collision Alert

Adaptive Cruise /

Full-Speed Range ACC

Aux Virtual Image Display (AVID)

Haptic Seat

Side Blind

Zone Alert

Front Camera Functions

New Technology: Advanced Driver Assistance System (ADAS)

3/25/2015 University of North Carolina visit 39

Computing Challenges for ADAS

• Very high computation demands
o Image processing, complex math computation

o Fusing and cross-examining information from different sources

• Very large amount of data
o Fast and continuous sampling

o Many streams of inputs

• Under real-time and embedded constraints
o Source of information for critical controls (speed, steering, braking, etc)

o Key part of system safety (ASIL-D), but with a weak computing platform support (ASIL-B)

• Other business challenges

3/25/2015 40University of North Carolina visit

Hardware Options

3/25/2015 University of North Carolina visit 41

Software Architecture Challenge: mixed-criticality

• Classified for each feature
o Forward collision avoidance – ASIL D

o Lane keeping – ASIL C

o Lane departure warning – ASIL A

• Different ASIL for functions in the same feature
o Object detection – ASIL B

o Video streaming – ASIL A

• ASIL may change in different modes during operation
o Back up: rear camera for monitoring and warning – ASIL C/D

o Normal driving: rear camera for monitoring – ASIL B

3/25/2015 42University of North Carolina visit

Software Architecture Challenge: virtualization

• Consider hypervisor

• Mixed different OSs to maintain
independence of applications

• Different impl. strategies
o Pass-through/native virtualization

o Para-virtualization

• Some examples
o Research: KVM, Xen, OKL4

o Commercial: QNX, WindRiver, COQUOS,
PikeOS, GH IntegrityOS, Coqos

3/25/2015 43University of North Carolina visit

Software Architecture Challenge: memory management

• Performance depends more on memory
o Same for multicore and GPU

o Memory protection doesn’t help

• Data locality should be explored
o Cache, system memory, device memory

o Partition of memory into continuous regions

• Cache- and memory-locking

3/25/2015 44University of North Carolina visit

Core 1

Core 2 Main

Memory

Core 3

τi
5 4 3 2 1

Memory Bus

τj

τk

0x30000

mission functions

role functions

…

mod_00_fn_00

mod_00_fn_00

Task 1 functions

Task 2 functions

.text, .text_vle sections

9KB .lock_section

Programming

• Programming Model
o Data parallelism

o Task parallelism

• Languages
o OpenCL

o CUDA

o OpenMP

3/25/2015 45University of North Carolina visit

Other Issues

• Task synchronization

• Data coherence and consistency

• Processor power consumption and temperature

3/25/2015 46University of North Carolina visit

Remarks

• Software development methods for large scale software for mass
produced CPS are still not mature

• New applications post additional technical and business challenges

• Advanced hardware offers great potentials but also posts
challenges

• Software architecture supporting predictable and analyzable
vehicle controls is still evolving and requires further research

3/25/2015 47University of North Carolina visit

END

3/25/2015 48University of North Carolina visit

Interference Among Controls

• Algorithms designed to run standalone

• Interferences of other controls through resource share causing more inconsistency
(temporal and data)

3/25/2015 49University of North Carolina visit

• Each line represents activation
of a distinct control (a schedule)

• Running standalone, they all
should be with regular pulses

• Diagram shows running on a
shared controller without any
protection (code-gen, flash, run)

• Observed extensive blocking (no
pulse) and busy-processing
(piggyback pulses)

Simulation Setup – Architecture Selection

• Test Scenario
o Host vehicle starts from 0 with 200 ft behind lead vehicle

o Lead vehicle moves with a predefined speed profile

• Task running synthetic workload
o Tasks are not randomly generated (like most academic cases)

o To be filled with control algorithm after it is done

• Processor utilization should be maintained less than 70%
o For single core, implies sampling period 80 ms and more

3/25/2015 University of North Carolina visit 50

Performance With Single or Dual-Core

40 ms 80 ms

3/25/2015 51University of North Carolina visit

Performance With Different Periods

Running on a resource restricted platform, pick 800 ms

If preserve control performance, pick 60 ms

3/25/2015 University of North Carolina visit 52

Performance With Different Synchronization

40 ms lock-free, wait-free 40 ms lock-based

3/25/2015 53University of North Carolina visit

Performance Under Different Sync and Period

3/25/2015 University of North Carolina visit 54

