An Introduction to Motion Planning Alan Kuntz 2/4/15 http://cs.unc.edu/~adkuntz/MotionPlanning.pdf

planning.cs.uiuc.edu

cs.unm.edu/amprg

cs.unm.edu/amprg

- Compute a collision-free path for the robot/ agent from a start configuration to a goal configuration
- Inputs
 - Geometry of robot/agent
 - Geometry of environment
 - Start and goal configurations
- Outputs
 - Continuous sequence of robot/agent configurations connecting the start and goal configurations

- Complete Always return a solution plan if one exists, otherwise indicate there isn't one
- Optimal Always return the best solution plan under some value metric

- Completeness In more than 2D, PSPACEhard
- Exponential in DOFs, number of obstacles, etc.
- May require computation of entire C-space.
- Doable in simple cases, like 2D with point robot. Easy because C-space is workspace

- What about for something more complex than a point?
- Next most complex Polygonal robot that translates but does not rotate.
- Can also be done relatively easy in 2D space through Minkowski Sums/Differences

 $\mathbf{CB} = \mathbf{B} \Theta \mathbf{A} = \{\mathbf{b} - \mathbf{a} \mid \mathbf{a} \in \mathbf{A}, \mathbf{b} \in \mathbf{B}\}$

Classic result by Lozano-Perez and Wesley 1979

Grate 2 (1, 134 tris)

- That's an obstacle in C-space for a mobile robot.
- The problem has now become to navigate a point through this higher dimensional space.

The Point

- A huge amount of motion planning concerns itself with navigating a point through some n-dimensional space.
- Why a point?
 - Points are easy.
 - Lines, Vectors, Graphs etc.
- Is this even useful?
 - Abstraction
 - Approximation
- How?

Potential Fields

Back to low dimensions

- How to plan the motion of a point?
- Discretize the space, construct a graph, search the graph.

Trapezoidal Decomposition

Quadtree Decomposition

Octree Decomposition

The Problem

- Methods like these require a model of Cspace
- These spaces becomes difficult/infeasible beyond three dimensions.
- How do we get around this?

The Point

 Describing the space is hard, but describing the state of a single point may not be.

Roadmaps

• Lets build a "roadmap" of the space, which requires much less evaluation.

Probabilistic Road Maps - PRM

- Learning Phase
 - Sample free points
 - Link samples to learn connectivity
 - Precomputed
- Query Phase
 - Add start and goal to roadmap
 - Connect to nearest neighbor
 - Compute path from start to goal
 - Multiple queries per road map

Probabilistic Road Maps - PRM

 Interactive Demo: <u>http://</u> robotics.cs.unc.edu/interactive/prm.html

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

 \bigcirc

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Intuition

- Describe your system in terms of some high dimensional space
 - C-space
 - State space
 - Workspace
 - Trajectory space
 - A combination
- Plan a path through that space under some constraints

Space Choices

- Choice is frequently problem dependent
- Frequently require some approximation, so what model resolution is sufficient?
- May be influenced by the capabilities of your controller
 - One end of the spectrum, control propagation
 - Other end, maps.

Additional Considerations

- What space will allow for easy and effective implementation or adaptation of pre-existing algorithms?
- Space construction will affect topology, connectivity, obstacle definitions etc.

Increased Complexity

- Dynamic Environments
 - Ideas?
- Noisy Sensing/Actuation
 - Other Ideas?
- Nonholonomy
 - Even More Ideas?

Conclusion

- Many different classes of motion planning algorithms
- It is very difficult to generalize them
- The intuition gained from thinking about the abstractions will help you to understand the approaches as you encounter them.

Questions?

• Many images curtesy of Dr. Alterovitz' Robotics course.

