
Survive your Success

Jurg van Vliet
& Flavia Paganelli

Amazon
EC2

Programming

Free Sampler

When you buy an ebook through oreilly.com, you get lifetime access to the book, and

whenever possible we provide it to you in four, DRM-free file formats—PDF, .epub,

Kindle-compatible .mobi, and Android .apk ebook—that you can use on the devices of

your choice. Our ebook files are fully searchable and you can cut-and-paste and print

them. We also alert you when we’ve updated the files with corrections and additions.

Learn more at http://oreilly.com/ebooks/

You can also purchase O’Reilly ebooks through iTunes,

the Android Marketplace, and Amazon.com.

O’Reilly Ebooks—Your bookshelf on your devices!

http://bit.ly/oreillyapps
http://www.android.com/market/
http://amazon.com
http://oreilly.com

Programming Amazon EC2
by Jurg van Vliet and Flavia Paganelli

Copyright © 2011 I-MO BV. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Julie Steele
Production Editor: Adam Zaremba
Copyeditor: Amy Thomson
Proofreader: FIX ME!

Indexer:
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Amazon EC2, the image of a TKTK, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39368-7

[LSI]

1295635226

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . ix

1. Introducing AWS . 1
From 0 to AWS 1

Biggest Problem First 2
Infinite storage 3
Computing Per Hour 4
Very Scalable Data Store 5
Optimizing Even More 6
Going Global 7

Growing into Your Application 7
Start with Realistic Expectations 8
Simply Small 8
Growing Up 9
Moving Out 10

“You Build It, You Run It” 11
Individuals and Interactions: One Team 11
Working Software: Shared Responsibility 12
Customer Collaboration: Evolve Your Infrastructure 13
Responding to Change: Saying Yes with a Smile 13

In Short 14

2. Starting with EC2, RDS, and S3/CloudFront . 15
Setting Up Your Environment 16

An AWS Account 16
Command-Line Tools 17
AWS Console 20
Other Tools 21

Choosing Your Geographic Location, Regions, and Availability Zones 21
Choose an Architecture 22
Creating the Rails Server on EC2 22

v

Create a Key Pair 22
Finding a Suitable AMI 24
Setting Up the Web/Application Server 25

RDS database 36
Creating an RDS Instance (Launching the DB Instance Wizard) 37
Is This All? 40

S3/CloudFront 42
Setting Up S3 and CloudFront 42
Static Content to S3/CloudFront 44

Making Backups of Volumes 46
Installing the Tools 47
Running the Script 47

In Short 50

3. Growing with S3, ELB, Auto Scaling and RDS . 51
Preparing to scale 52

Set up the tools 53
S3 for file uploads 54

User uploads for Kulitzer (Rails) 54
Elastic Load Balancing (ELB) 55

Create an ELB 56
Difficulties with ELB 59

Auto Scaling 60
Setting up Auto Scaling 61
Auto Scaling in production 64

Scaling a relational database 66
Scaling Up (or Down) 66
Scaling Out 68
Tips & tricks 69

In short 70

4. Decoupling with SQS, SimpleDB and SNS . 71
Simple Queue Service (SQS) 71

Example 1: Offloading image processing for Kulitzer (Ruby) 72
Example 2: Priority PDF processing for Marvia (PHP) 75
Example 3: Monitoring Queues in Decaf (Java) 79

SimpleDB 83
Use cases for SimpleDB 85
Example 1: Storing Users for Kulitzer (Ruby) 86
Example 2: Sharing Marvia Accounts and Templates (PHP) 89
Example 3: SimpleDB in Decaf (Java) 94

Simple Notification Service (SNS) 97
Implementing contest rules for Kulitzer (Ruby) 98

vi | Table of Contents

PDF Processing Status (kind of monitoring) for Marvia (PHP) 103
SNS in Decaf 106

In short 108

5. Manage the inevitable downtime . 109
Measure 110

Up/Down alerts 110
Monitoring on the inside 110
Monitoring on the outside 114

Understand 117
Why did I loose my instance? 118
Spikes are interesting 118
Predicting bottlenecks 119

Improvement strategies 120
Benchmarking and tuning 120
The merits of virtual hardware 121

In short 122

6. Improve your uptime . 123
Measure 123

EC2 124
ELB 125
RDS 126
Using dimensions from the command line 127
Alerts 127

Understand 130
Setting expectations 130
View components 131

Improvement strategies 132
Plan non-autoscaling components 132
Tuning Auto Scaling 132

In short 132

7. Manage your decoupled system . 135
Measure 135

Simple Storage Service 136
Simple Queue Service 136
SimpleDB 143
Simple Notification Service 146

Understand 147
Imbalances 147
Bursts 148

Improvement strategies 148

Table of Contents | vii

Queues neutralize bursts 149
Notifications accelerate 149

In short 150

8. And now… . 151
Other approaches 151
Private/hybrid clouds 152
Thank you 152

Index . 153

viii | Table of Contents

CHAPTER 1

Introducing AWS

From 0 to AWS
By the late 1990s, Amazon had proven its success—it showed people were willing to
shop online. Amazon generated $15.7 million sales in 1996, its first full fiscal year. Just
3 years later, Amazon saw $1.6 billion in sales and Jeff Bezos was chosen Person of the
Year by Time magazine (http://www.time.com/time/subscriber/personoftheyear/archive/
stories/1999.html). Realizing its sales volume was only 0.5% that of Wal-Mart, Amazon
set some new business goals. One of these goals was to change from shop to platform.

At this time, Amazon was struggling with its infrastructure. It was a classic monolithic
system, which was very difficult to scale, and Amazon wanted to open it up to third
party developers. In 2002, Amazon created the initial AWS, an interface to program-
matically access Amazon’s features. This first set of APIs is described in the wonderful
book Amazon Hacks (http://oreilly.com/catalog/9780596005429) by Paul Bausch
(O’Reilly), which still sits prominently on one of our shelves.

But the main problem persisted—the size of the Amazon website was just too big for
conventional (web) application development techniques. Somehow, Jeff Bezos found
Werner Vogels (now CTO of Amazon) and lured him to Amazon in 2004 to help fix
these problems. And this is when it started for the rest of us. The problem of size was
addressed, and slowly AWS transformed from “shop API” to an “infrastructure cloud.”
To illustrate exactly what AWS can do for you, we want to take you through the last 6
years of AWS evolution (refer to Figure 1-1 for a timeline). It is not just a historical
journey, it is also a friendly way to introduce the most important components for start-
ing with AWS.

AWS has two unique qualities:

• It doesn’t cost much to get started. For example, you don’t have to buy a server to
run it.

• It scales and continues to run at a low cost. For example, you can scale elastically,
only paying for what you need.

1

http://www.seattlepi.com/business/158315_amazon28.html
http://www.time.com/time/subscriber/personoftheyear/archive/stories/1999.html
http://www.time.com/time/subscriber/personoftheyear/archive/stories/1999.html
http://www.time.com/time/subscriber/personoftheyear/archive/stories/1999.html
http://www.time.com/time/subscriber/personoftheyear/archive/stories/1999.html
http://oreilly.com/catalog/9780596005429
http://oreilly.com/catalog/9780596005429
http://aws.amazon.com/

The second quality is by design, since dealing with scale was the initial problem AWS
was designed to address. The first quality is somewhat of a bonus, but Amazon has
really used this quality to its (and our) advantage. No service in AWS is useless, so let’s
go through them in the order they were introduced, and try to understand what problem
they were designed to solve.

Biggest Problem First
If your system gets too big, the easiest (and perhaps only) solution is to break it up into
smaller pieces that have as few dependencies on each other as possible. This is often
referred to as decoupling. The first big systems that applied this technique were not web
applications, they were applications for big corporations like airlines and banks. These
applications were built using tools such as CORBA (http://www.omg.org/), and using
the “component based software engineering” concept. Similar design principles were
used to coin the more recent term SOA, or service oriented architecture (http://en.wiki
pedia.org/wiki/Service-oriented_architecture), which is mostly applied to web applica-
tions and their interactions.

Amazon adopted one of the elements of these broker systems, namely, message pass-
ing. If you break up a big system into smaller components, they probably still need to
exchange some information. They can pass messages to each other, and the order in
which these messages are passed is often important. The simplest way of organizing a
message passing system, respecting order, is a queue (Figure 1-2). And that is exactly
what Amazon built first in 2004: Amazon Simple Queue Service (http://aws.amazon
.com/sqs/), or SQS.

By using SQS, according to AWS, “developers can simply move data between distrib-
uted components of their applications that perform different tasks, without losing
messages or requiring each component to be always available.” This is exactly what
Amazon needed to start deconstructing its own monolithic application. One interesting
feature of SQS is that you can rely on the queue as a buffer between your components,
implementing elasticity. In many cases, your web shop can have huge peaks and gen-
erate 80% of the orders in 20% of the time. You can have a component which processes

Figure 1-1. Timeline of AWS

2 | Chapter 1: Introducing AWS

http://www.omg.org/
http://www.omg.org/
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/

these orders, and a queue containing them. Your web application would put orders in
the queue, and then your processing component can work on the orders the entire day
without overloading your web application.

Infinite storage
In every application, storage is an issue. There is a very famous quote attributed to Bill
Gates that 640k “ought to be enough for anybody.” Of course, he denies having said
this, but it does trigger some emotion. We all buy hard disks believing they will be more
than enough for our requirements. But within two years we already need more. It seems
there is always something to store and there is never enough space to store it. What we
need is infinite storage.

To fix this problem once and for all, Amazon introduced Amazon Simple Storage Serv-
ice (http://aws.amazon.com/s3/), or S3. It was released in 2006, two years after Amazon
announced SQS. The time Amazon took to release it shows that storage was not an
easy problem to solve. S3 allows you to store objects of up to 5 TeraBytes, and the
number of objects you can store is unlimited. An average DivX is somewhere between
600 and 700 megabytes. Building a video rental service on top of S3 is not such a bad
idea, Netflix must have realized.

According to AWS, S3 is “designed to provide 99.999999999% durability and 99.99%
availability of objects over a given year.” This is a bit abstract, and people often ask us
what it means. We have tried to calculate it ourselves, but the tech reviewers did not
agree with our math skills. So this is the perfect opportunity to quote someone else.
According to Amazon Evangelist Jeff Barr, this many 9s means that, “If you store 10,000
objects with us, on average we may lose one of them every 10 million years or so.”
Impressive! S3 as a service is covered by a service level agreement (SLA), making these
numbers not just a promise but a full contract.

S3 was extremely well received. Even Microsoft was (or is) one of the customers using
S3 as a storage solution, as advertised in one of the announcements of AWS: “Global
enterprises like Microsoft are using Amazon S3 to dramatically reduce their storage
costs without compromising scale or reliability” (http://aws.amazon.com/about-aws/
whats-new/2006/07/11/amazon-simple-storage-service-amazon-s3---continuing-suc

Figure 1-2. Passing messages using a queue

From 0 to AWS | 3

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/about-aws/whats-new/2006/07/11/amazon-simple-storage-service-amazon-s3---continuing-successes/
http://aws.amazon.com/about-aws/whats-new/2006/07/11/amazon-simple-storage-service-amazon-s3---continuing-successes/
http://aws.amazon.com/about-aws/whats-new/2006/07/11/amazon-simple-storage-service-amazon-s3---continuing-successes/
http://aws.amazon.com/about-aws/whats-new/2006/07/11/amazon-simple-storage-service-amazon-s3---continuing-successes/
http://aws.amazon.com/about-aws/whats-new/2006/07/11/amazon-simple-storage-service-amazon-s3---continuing-successes/

cesses/). In only two years, S3 grew to store 10 billion objects. In early 2010, AWS
reported to store 102 billion objects in S3. Figure 1-3 illustrates the growth of S3 since
its release.

Computing Per Hour
Though we still think the most revolutionary of services is S3 because no one had solved
the problem of unlimited store before, the service with the most impact is undoubtedly
Amazon Elastic Compute Cloud (http://aws.amazon.com/ec2/), or EC2. Introduced as
limited beta in the same year that S3 was launched (2006), EC2 turned computing
upside down. AWS used XEN virtualization to create a whole new cloud category,
Infrastructure as a Service, long before people started googling for IaaS. Though server
virtualization already existed for quite a while, buying one hour of computing power
in the form of a Linux (and later Windows) server did not exist yet.

Remember, Amazon was trying to decouple, to separate its huge system into compo-
nents. For Amazon, EC2 was the logical missing piece of the puzzle because Amazon
was in the middle of implementing a strict form of SOA. In Amazon’s view, it was
necessary to change the organization. Each team would be in charge of a functional
part of the application, like wish lists or search. Amazon didn’t want each (small) team
to just build its own infrastructure, but also for developers to operate their apps them-
selves. Werner Vogels said it in very simple terms, “You build it, you run it.”

Figure 1-3. S3’s huge popularity expressed in objects stored

4 | Chapter 1: Introducing AWS

http://aws.amazon.com/about-aws/whats-new/2006/07/11/amazon-simple-storage-service-amazon-s3---continuing-successes/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

In 2007, EC2 was opened to everyone, but it took more than a year before AWS an-
nounced general availability, including SLA. There were some very important features
added in the meantime, most of them as a result of working with the initial community
of EC2 users. During this period of refining EC2, AWS earned the respect of the de-
velopment community. It showed that Amazon listened and, more importantly, cared.
And this is still true today. The Amazon support forum is perhaps its strongest asset.

By offering computing capacity per hour, AWS created elasticity of infrastructures from
the point of view of the application developer (also our point of view.) When it was
this easy to launch servers, which Amazon calls instances, a whole new range of appli-
cations became reachable to a lot of people. Event-driven websites, for example, can
scale up just before and during the event and can run at low capacity the rest of time.
Also, computational-intensive applications, such as weather forecasting, are much eas-
ier and cheaper to build. Renting one instance for 10,000 hours is just as cheap as
renting 10,000 instances for an hour.

Very Scalable Data Store
Amazon’s big system is decoupled with the use of SQS and S3. Components can com-
municate effectively using queues and can share large amounts of data using S3. But
these services are not sufficient as glue between the different applications. In fact, most
of the interesting data is structured and is stored in shared databases. It is the relational
database that dominates this space, but relational databases are not terribly good at
scaling, at least for commodity hardware components. Amazon introduced Relational
Database Server (RDS) recently, sort of “relational database as a service,” (MySQL) but
its own problem dictated that it needed something else first.

Although normalizing data is what we have been taught, it is not the only way of han-
dling information. It is surprising what you can achieve when you limit yourself to a
searchable list of structured records. You will lose some speed on each individual
transaction because you have to do more operations, but you gain infinite scalability.
You will be able to do many more simultaneous transactions. Amazon implemented
this in an internal system called Dynamo, and later, AWS launched Amazon Sim-
pleDB (http://aws.amazon.com/simpledb/).

It might appear that the lack of joins severely limits the usefulness of a database, espe-
cially when you have a client-server architecture with dumb terminals and a mainframe
server. You don’t want to ask the mainframe seven questions when one would be
enough. A browser is far from a dumb client, though. It is optimized to request multiple
sources at the same time. Now, with a service specially designed for many parallel
searches, we have a lot of possibilities. By accessing a user’s client ID, we can get her
wish list, her shopping card, and her recent searches, all at the same time.

There are alternatives to SimpleDB, and some are more relational than others. And with
the emergence of big data, this field, also referred to as NoSQL, is getting a lot of
attention. But there are a couple of reasons why it will take time before SimpleDB and

From 0 to AWS | 5

http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/

others will become successful. The most important reason is that we have not been
taught to think without relations. Another reason is that most frameworks imply a
relational database for their models. But SimpleDB is incredibly powerful. It will take
time, but slowly but surely it will find its place in (web) development.

Optimizing Even More
The core principle of AWS is optimization, measured in hardware utilization. From the
point of view of a cloud provider like AWS, you need economies of scale. As a developer,
or cloud consumer, you need tools to operate these infrastructure services. By listening
to its users and talking to prospective customers, AWS realized this very point. And
almost all the services introduced in this last phase are meant to help developers opti-
mize their applications.

One of the steps of optimization is creating a service to take over the work of a certain
task. An example we have seen before is S3, which offers storage as a service. A common
task in web (or Internet) environments is load balancing. And just as with storage or
queues, it would be nice to have something that can scale more or less infinitely. AWS
introduced a service called Elastic Load Balancing (http://aws.amazon.com/elasticload
balancing/), or ELB, to do exactly this.

When the workload is too much for one instance, you can start some more. Often, but
not always, such a group of instances doing the same kind of work is behind an ELB.
To manage a group like this, AWS introduced Auto Scaling (http://aws.amazon.com/
autoscaling/). With Auto Scaling you can define rules for growing and shrinking a group
of instances. You can automatically launch a number of new instances when CPU uti-
lization or network traffic exceeds certain thresholds, and scale down again on other
triggers.

To optimize use, you need to know what is going on; you need to know how the in-
frastructure assets are being used. AWS introduced CloudWatch to monitor many as-
pects of the infrastructure assets. With CloudWatch, it is possible to measure metrics
like CPU utilization, network IO, and disk IO over different dimensions like an instance
or even all instances in one region.

AWS is constantly looking to optimize, from the point of view of application develop-
ment. It tries to make building web apps as easy as possible. In 2009, it created RDS,
a managed MySQL service, which eases the burden of optimization, backups, scaling,
etc. Early in 2010, AWS introduced the high availability version of RDS. AWS also
complemented S3 with CloudFront, a very cheap content delivery network, or CDN.
CloudFront now supports downloads and streaming and has many edge locations
around the world.

6 | Chapter 1: Introducing AWS

http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/

Going Global
AWS first launched in the United States, on the east coast, in North Virginia. From the
start, the regions were designed with the possibility of failure in mind. A region consists
of availability zones, which are physically separate data centers. Zones are designed to
be independent so failure in one doesn’t affect the other. When you can, use this feature
of AWS, because it can harden your application.

While AWS was adding zones to the US East region, it also started building new regions.
The second to come online was Europe, in Ireland. And after that, AWS opened another
region in the US, on the west coast, in Northern California. One highly anticipated new
region was expected (and hinted at) in Asia Pacific. And in April 2010, AWS opened
region number four in Singapore.

Growing into Your Application
In 2001, the Agile Manifesto (http://en.wikipedia.org/wiki/Agile_Manifesto) for software
development was formulated because a group of people felt it was necessary to have
more lightweight software development methodologies than were in use at that time.
Though this movement has found its place in many different situations, it can be argued
that the Web was a major factor in its widespread adoption. Application development
for the Web has one major advantage over packaged software: in most cases it is dis-
tributed exactly once. Iterative development is much easier in such an environment.

Iterative—agile—infrastructure engineering is not really possible with physical hard-
ware. There is always a significant hardware investment, which almost always results
in scarcity of these resources. More often than not, it is just impossible to take a couple
of servers out to redesign and rebuild a critical part of your infrastructure. With AWS,
you can easily build your new application server, redirect production traffic when you
are ready, and terminate the old servers. For just a few dollars, you can upgrade your
production environment without the usual stress.

This particular advantage of clouds over physical hardware is important. It allows for
applying an agile way of working to infrastructures, and lets you iteratively grow into
your application. You can use this to create room for mistakes, which are made every-
where. It also allows for stress testing your infrastructure and scaling out to run tens
or even hundreds of servers. And, as it happened to us in the early days of Layar (http:
//www.layar.com/), you can move your entire infrastructure from the United States to
Europe in just a day.

In the following sections, we will look at the AWS services you can expect to use in the
different iterations of your application.

Growing into Your Application | 7

http://en.wikipedia.org/wiki/Agile_Manifesto
http://en.wikipedia.org/wiki/Agile_Manifesto
http://www.layar.com/
http://www.layar.com/
http://www.layar.com/

Start with Realistic Expectations
When asking the question, “Does the application have to be highly available?” the
answer is usually a clear and loud “yes.” This is often expensive, but the expectation is
set and we work very hard to live up to it. If you ask the slightly different question, “Is
it acceptable to risk small periods of downtime provided we can restore quickly without
significant loss of data?” the answer is the same, especially when it becomes clear that
this is much less expensive. Restoring quickly without significant loss of data is difficult
with hardware, because you don’t always have spare systems readily available. With
AWS, however, you have all the spare resources you want. Later, we’ll show you how
to install the necessary command-line tools, but all you need to start five servers is:

$ ec2-run-instances ami-480df921 -n 5

When it is necessary to handle more traffic, you can add servers—so called EC2 in-
stances—to relieve the load on the existing infrastructure. After adjusting the applica-
tion so it can handle this changing infrastructure, you can have any number of instances
doing the same work. This way of scaling, scaling out, offers an interesting opportunity.
By creating more instances doing the same work, you just made that part of your in-
frastructure highly available. Not only is your system able to handle more traffic, or
more load, it is also more resilient. One failure does not bring your app down anymore.

After a certain amount of scaling out, this method won’t work anymore. Your appli-
cation is probably becoming too complex to manage. It is time for something else; the
applications needs to be broken up into smaller interoperating applications. Luckily,
the system is agile and we can isolate and extract one component at a time. This has
significant consequences for the application. The application needs to implement ways
for its different parts to communicate and share information. But using the AWS serv-
ices, the quality of the application only gets better. Now entire components can fail
and the app itself will remain functional or at least responsive.

Simply Small
AWS has many useful and necessary tools to design for failure. You can assign Elastic
IP addresses to an instance. If the instance dies or if you replace it, you reassign the
Elastic IP address. You can also use Elastic Block Store (EBS) volumes for instance
storage. With EBS, you can “carry around” your disks from instance to instance. By
making regular snapshots of the EBS volumes you have an easy way to back up your
data. An instance is launched from an image, a read-only copy of the initial state of your
instance. For example, you can create an image containing the Ubuntu operating sys-
tem, with Apache web server, PHP, and your web application installed. And a boot
script can automatically attach volumes and assign IP addresses. Using these tools will
allow you to instantly launch a fresh copy of your application within minutes.

Most applications start with some sort of database. And the most popular database is
MySQL. The AWS RDS offers MySQL as a service. RDS offers numerous advantages

8 | Chapter 1: Introducing AWS

like backup/restore and scalability. The advantages it brings are significant. If you don’t
use this service, make sure you have an extremely good reason not to. Scaling a rela-
tional database is notoriously hard, as is making it resilient to failure. With RDS, you
can start small, and if your traffic grows you can scale up the database as an immediate
solution. That gives you time to implement optimizations to get the most out of the
database, after which you can scale it down again. This is simple and convenient;
priceless. The command-line tools make it easy to launch a very powerful database:

$ rds-create-db-instance kulitzer \
 --db-instance-class db.m1.small \
 --engine MySQL5.1 \
 --allocated-storage 5 \
 --db-security-groups default \
 --master-user-password Sdg_5hh \
 --master-username arjan \
 --backup-retention-period 2

Having the freedom to fail, (occasionally, of course), also offers another opportunity:
you can start searching for the boundaries of the application’s performance. Experi-
encing difficulties because of increasing traffic helps you get to know the different
components and optimize them. If you limit yourself in infrastructure assets, you are
forced to optimize to get the most out of your infrastructure. Because the infrastructure
is not so big yet, it is easier to understand and identify the problem, making it easier to
improve. Also use your freedom to play around. Stop your instance or scale your RDS
instance. Learn the behaviour of the tools and technologies you are deploying. This
approach will pay back later on, when your app gets critical and you need more re-
sources to do the work.

One straightforward way to optimize your infrastructure is to offload the “dumb” tasks.
Most modern frameworks have facilities for working with media or static subdomains.
The idea is that you can use extremely fast web servers or caches to serve out this static
content. The actual dynamics are taken care of by a web server like Apache, for example.
We are fortunate to be able to use CloudFront. Put your static assets in an S3 bucket
and expose them using a CloudFront distribution. The advantage is that you are using
a full featured content delivery network with edge locations all over the world. But you
have to take into account that a CDN caches aggressively, so change will take some
time to propagate. You can solve this by implementing invalidation, building in some
sort of versioning on your assets, or just having a bit of patience.

Growing Up
The initial setup is static. But later on, when traffic or load is picking up, you need to
start implementing an infrastructure that can scale. With AWS, the biggest advantage
you have is that you can create an elastic infrastructure, one that scales up and down
depending on demand. Though this is a feature many people want, and some even
expect out of the box, it is not applicable to all parts of your infrastructure. A relational
database, for example, does not easily scale up and down automatically. Work that can

Growing into Your Application | 9

be distributed to identical and independent instances is extremely well suited to an
elastic setup. Luckily, web traffic fits this pattern, especially when you have a lot of it.

Let’s start with the hard parts of our infrastructure. First is the relational database. We
started out with an RDS instance, which we said is easily scalable. It is, but, unaided,
you will reach its limits relatively quickly. Relational data needs assistance to be fast
when the load gets high. The obvious choice for optimization is caching, for which
there are solutions like Memcached. But RDS is priceless if you want to scale. With
minimum downtime, you can scale from what you have to something larger (or
smaller):

$ rds-modify-db-instance kulitzer \
 --db-instance-class db.m1.xlarge \
 --apply-immediately

We have a strategy to get the most out of a MySQL-based datastore, so now it is time
to set up an elastic fleet of EC2 instances, scaling up and down on demand. AWS has
two services designed to take most work out of your hands:

• Amazon ELB

• Amazon Auto Scaling

ELB is, for practical reasons, infinitely scalable and works closely with EC2. It balances
the load by distributing it to all the instances behind the load balancer. The introduction
of sticky sessions (sending all requests from a client session to the same server) is only
recent, but with that added, it is feature-complete. With Auto Scaling, you can set up
an autoscaling group to manage a certain group of instances. The autoscaling group
launches and terminates instances depending on triggers, for example on percentage
of CPU utilization. You can also set up the autoscaling group to add and remove these
instances from the load balancer. All you need is an image that launches into an instance
that can independently handle traffic it gets from the load balancer.

ELB is practically infinitely scalable, but that comes at a cost. The management over-
head of this scaling adds latency to the transactions. But, in the end, human labour is
more expensive, and client performance does not necessarily need ultra low latencies
in most cases. Using ELB and Auto Scaling has many advantages, but if necessary, you
can build your own. All the AWS services are exposed as APIs. You can write a daemon
that uses CloudWatch to implement triggers that launch/terminate instances.

Moving Out
The most expensive part of the infrastructure is the relational database component.
None of the assets involved here scale easily, let alone automatically. The most expen-
sive operation is the join. We already minimized the use of joins by caching objects,
but it is not enough. All the big boys and girls try to get rid of their joins altogether.
Google has BigTable and Amazon has SimpleDB, both of which are part of what is now

10 | Chapter 1: Introducing AWS

known as NoSQL. Other examples of NoSQL databases are MongoDB and Cassandra,
and they have the same underlying principle of not joining.

The most radical form of minimizing the use of joins is to decouple, and a great way to
decouple is to use queues. Two applications performing subtasks previously performed
by one application are likely to need less severe joins. Internally, Amazon has imple-
mented an effective organization principle to enforce this behaviour. Amazon reorgan-
ized along the lines of the functional components. Teams are responsible for everything
concerning their particular applications. These decoupled applications communicate
using Amazon SQS and Amazon Simple Notification Service (SNS), and they share
using Amazon SimpleDB and Amazon S3.

These teams probably use MySQL and Memcached and ELB to build their applications.
But the size of each component is reduced and the traffic/load on each is now man-
ageable again. This pattern can be repeated again and again, of course.

“You Build It, You Run It”
Perhaps by chance, probably by design, AWS empowers development teams to become
truly agile. They do this in two ways:

• Getting rid of the long term aspect of the application infrastructure (investment).

• Building tools to help overcome the short-term aspect of operating the application
infrastructure (failure).

There is no need to distinguish between building and running, and according to Werner
Vogels (http://queue.acm.org/detail.cfm?id=1142065), it is much better than that:

Giving developers operational responsibilities has greatly enhanced the quality of the
services, both from a customer and a technology point of view. The traditional model is
that you take your software to the wall that separates development and operations, and
throw it over and then forget about it. Not at Amazon. You build it, you run it. This
brings developers into contact with the day-to-day operation of their software. It also
brings them into day-to-day contact with the customer. This customer feedback loop is
essential for improving the quality of the service.

This lesson is interesting, but this particular change in an organization is not always
easy to implement. It helped that he was the boss, though it must have cost him many
hours, days, and weeks to convince his colleagues. If you are not the boss, it is even
more difficult, but not impossible. As we have seen before, AWS offers ways to be agile
with infrastructures. You can tear down servers, launch new ones, reinstall software,
and undo entire server upgrades, all in moments.

Individuals and Interactions: One Team
In bigger organizations there is an IT department. Communication between the or-
ganization and its IT department can difficult or even entirely lacking. The whole ac-

“You Build It, You Run It” | 11

http://queue.acm.org/detail.cfm?id=1142065
http://queue.acm.org/detail.cfm?id=1142065
http://queue.acm.org/detail.cfm?id=1142065

tivity of operating applications can be surrounded with frustration and everyone feels
powerless. Smaller companies often have a hosting provider, which can be very similar
to an IT department. A hosting provider tends to be a bit better than an IT department,
because you can always threaten to replace it. But the lock-in is significant enough to
ignore these issues; for a small company it is generally more important to focus on
development than to spend time and energy on switching hosting provider.

Let’s start with one side, the IT department or hosting provider. Its responsibility is
often enormous. IT department members have to make decisions on long-term invest-
ments with pricetags that exceed most product development budgets. These invest-
ments can become difficult projects with a huge impact on users. And at the same time,
the IT department has to make sure everything runs fine 24x7. It is in a continuous
split between dealing with ultra long term and ultra short term; there seems to be
nothing in between.

OK, the development team, then. The work of the development team is exactly in
between the long term and the short term. The team is asked to deliver in terms of
weeks and months, and often makes changes in terms of days. During the development
and testing phases, bugs and other problems are part of the processes, part of the team’s
life. But once in production, the application is out of the team’s hands, whether they
like it or not.

Organizations can handle these dynamics by creating complex processes and tools.
Because each group typically has no understanding of each other’s responsibilities, they
tend to formalize the collaboration/communication between the teams, making it im-
personal. But as the Agile Manifesto states, in developing software individuals and in-
teractions are more valuable than processes and tools. With AWS, the investment part
of infrastructures is nonexistent. And AWS helps you manage the ultra short term by
providing the tools to recover from failure. With AWS, you can merge the responsibility
of running the application with the responsibility of building it. And by doing this, you
turn the focus on the people and their interactions instead of on creating impersonal
and bureaucratic processes.

Working Software: Shared Responsibility
Deploying software is moving the application from development to the “other side,”
called production. Of course, the other side—the IT department in the traditional
structure—has already committed to a particular SLA. As soon as the application is
moved, The IT department is on its own. As a consequence, members want or need to
know everything necessary to run the application, and they require documentation to
do so.

This documentation is an SLA itself. If there is a problem related to the software that
is not included in the documentation, fingers will point to the development team. The
documentation becomes a full description of every aspect of the application, for fear
of liability.

12 | Chapter 1: Introducing AWS

But in the end, there is only one thing that matters, and that is whether the application
is running. This is not very difficult to determine if the responsibility is shared; the team
members will quickly discuss a solution instead of discussing who is to blame. So, the
thing to do is to build working software together, as a team. Remove the SLAs and merge
the functions of two teams into one. When something doesn’t work, it needs to be fixed
—it does not always have to be debated first. Documentation in this context becomes
less important as a contract between parts and becomes just an aid to keep the appli-
cation running.

Customer Collaboration: Evolve Your Infrastructure
Wherever IT is present, there is an SLA. The SLA is regarded as a tool in managing the
process of IT infrastructure, where the bottom line is the number of nines. In reality it
is a tool designed to facilitate cooperation, but is often misused for the purpose of
deciding who is responsible for problems, development or operations.

It can be difficult to negotiate this contract at the time of application development.
There is a huge difference between “we need to store audio clips for thousands of
customers” and “storage requirements are estimated to grow exponentially from 500
GB to 5 TB in 3 years.” The problem is not so much technical as it is that expectations
(dreams, often) are turned into contract clauses.

You can change contract negotiation into customer collaboration. All you need to do is
merge the two responsibilities; building and running the application becomes a shared
challenge, and success is the result of a shared effort. Of course, in this particular ex-
ample it helps to have Amazon S3, but the point is that requirements change, and
collaboration with the customer is better suited for handling those changes than com-
plex contract negotiations.

Responding to Change: Saying Yes with a Smile
At the end of the project, just two weeks before launch, the CEO is shown a sneak
preview of the new audio clip platform. She is very excited, and proud of the team
effort. The meeting is positive and she is reassured everything is planned for. Even if
the dreams of millions of customers come true, the platform will not succumb to its
success because it’s ready to handle a huge amount of users.

In the evening, she is telling her boyfriend about her day. She shares her excitement
and they both start to anticipate how they would use the new platform themselves. At
a certain moment, he says, “Wouldn’t it be great to have the same platform for video
clips?!” Of course, he doesn’t know that this whole project was based on a precondition
of audio-only; neither does the CEO.

In the morning, she calls the project manager and explains her idea. She is still full of
energy and says enthusiastically, “the functionality is 100% perfect, we only want audio
AND video.” The project manager knows about the precondition and he also knows

“You Build It, You Run It” | 13

that video files are significantly bigger than audio files. However, the CEO doesn’t want
to hear buts and objections about moving away from the plan; she wants this product
to change before launch.

In Short
In this chapter we walked you through the last years of the history of AWS. We showed
how each of the AWS services was created to solve a particular problem with Amazon’s
platform. We gave you a brief overview of the different AWS services you can use to
build, monitor, and scale your cloud infrastructure. And finally, we talked about how
developing with AWS is naturally agile and allows you to make the infrastructure
building and running part of the development process.

In the rest of the book, we’ll show how all these services actually work. So, get ready
to stop reading and start doing! In the next chapter, we will start with migrating a simple
web application to AWS using EC2, RDS, S3, and CloudFront.

14 | Chapter 1: Introducing AWS

CHAPTER 2

Starting with EC2, RDS, and S3/
CloudFront

So far we have talked about AWS. You have seen where it comes from, how it can help
you with growing your application, and how a virtual infrastructure on AWS benefits
your work. It is important to understand the context, because it helps you select the
services and tools you need to move your app to AWS. But real experience only comes
with practice!

So, let’s get down to business. First off, you need an AWS account, which requires a
valid credit card and a phone. Once you have an account, all AWS services are at your
disposal. To use the services, you need to set up your local environment for working
with the command-line tools in case you need them. For now, the AWS Console and
command-line tools are enough, but there are commercial and noncommercial appli-
cations and services available that offer something extra. Last, but not least, you might
want to monitor your application and get tools to fix it on the move as well.

With the account activated and the tools available, all we need is an application to
build. Working on a real application is more fun than just a demo, so we’ll use one of
our applications in production, called Kulitzer. Kulitzer.com (http://www.kulitzer
.com/) calls itself “the contest platform for creative people. You can join a contest, enter
your work, and take a seat in the jury. Can’t find any contest you like? Start your own!”
Kulitzer is a Rails application, developed in New Zealand by Arjan van Woensel. Very
early in the process, van Woensel decided he wanted Kulitzer on AWS. The main rea-
sons for this were price and scalability.

In this chapter, we will move Kulitzer.com to AWS. You can follow along with your
own app, it doesn’t have to be a Rails application. We will not be showing much code;
rather, we will concentrate on the infrastructure and tools necessary to work with AWS.
If you don’t have an app at hand, there are many open source apps available. We’ll
build it using Amazon RDS, a flavor of MySQL, because we love it. But you can just as
well run your own PostgreSQL database, for example. It is a good idea to follow along,

15

http://www.kulitzer.com/
http://www.kulitzer.com/
http://www.kulitzer.com/

and if you carefully stop your instances, it will definitely not cost you more than what
you paid for this book, since AWS offers a free tier.

Setting Up Your Environment
Before you can start setting up your instances and creating Amazon Machine Images
(AMIs) you have to set up a good working environment. You don’t need much, as AWS
is 100% virtual. But you do need a couple of things:

• A desktop or laptop (with Internet access, of course)

• A credit card, for setting up an AWS account

• A phone (to complete the registation process)

We use a MacBook, but many of our colleagues work on Ubuntu or Windows. We’ll
use the terminal app, and bash as our shell. The only real requirement is to have Java
installed, for the command-line tools. For the rest, any browser will do.

An AWS Account
Creating an AWS account is pretty straighforward. Go to the AWS website (http://aws
.amazon.com/) and click the Sign Up Now button. You can use an existing Amazon
account to sign up for AWS.

This will create the Amazon.com account you are going to use to access AWS. But this
is not enough. To start with, you need EC2. On the AWS site, click on Amazon Elastic
Compute Cloud under Projects. Click the Sign Up For Amazon EC2 button. With your
credit card and phone ready, you can complete the signup; the last stage of this process
is a validation step where you are called by Amazon (see Figure 2-1).

Later, you’ll need other services, but signing up for those is much easier after the credit
card validation and account verification have been taken care of.

16 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/

You might be wondering now… how much will all this this cost me? To
start with, signing up for services doesn’t cost anything. When you start
actually using the services, Amazon provides a free usage tier (http://aws
.amazon.com/free/) for every service, which lasts for a year after signup.
For example, it’s possible to use a micro instance for free for 750 hours
a month. For S3 storage, the limit is 5GB. Also, services like SQS and
SimpleDB offer some free space to play around with. After you have
used up your free tier, a micro instance will cost you only about US$0.02
per hour. Remember to stop the instances when you are not using them,
and you will have a lot of resources to use for experimenting.

If you are wondering how much it will cost to have a real application in
the Amazon cloud, take a look at the Amazon Simple Monthly Calcu-
lator (http://calculator.s3.amazonaws.com/calc5.html). There, you can
fill in how many servers you will use, how much storage, how many
volumes, bandwidth, etc., and it will calculate the cost for you.

Command-Line Tools
Do take the few minutes it takes to install the command-line tools. Even though most
EC2 functionality is supported by the web-based AWS Console, you will occasionally
have to use the command line for some features that are not yet implemented in the
console. Plus, later on you might want to use them to script tasks that you want to
automate.

Figure 2-1. Identity verification

Setting Up Your Environment | 17

http://aws.amazon.com/free/
http://aws.amazon.com/free/
http://aws.amazon.com/free/
http://calculator.s3.amazonaws.com/calc5.html
http://calculator.s3.amazonaws.com/calc5.html
http://calculator.s3.amazonaws.com/calc5.html

Running the command-line tools is not difficult if you set up the environment properly.
Accessing AWS is safe; it is protected in a couple of different ways. There are three
types of access credentials (you can find these in the Account section if you look for
Security Credentials at http://aws.amazon.com/):

• Access Keys, for REST and Query protocol requests

• X.509 Certificates, to make secure SOAP protocol requests

• Key Pairs, in two different flavours, for protecting CloudFront content and for
accessing your EC2 instances

You will need X.509 credentials, the EC2 API tools (http://developer.amazonwebservices
.com/connect/entry.jspa?externalID=351), and the RDS Command Line Toolkit (http:
//developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID
=294) to follow along with the exercises in this chapter. Working with these tools
requires you to specify your security credentials, but you can define them in environ-
ment variables. Our “virgin” AWS account does not have much, and it doesn’t have X.
509 Certificates yet. You should still be on the Security Credentials page, where you
can either upload your own or create them. We can ask AWS to create our X.509
Certificates and immediately download both the Access Key ID and the Secret Access
Key (Figure 2-2).

With your downloaded certificates, you can set the environment variables. For this,
create a bash script called initaws, like the one listed below (for Windows, we would

Figure 2-2. AWS credentials

18 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

http://aws.amazon.com/
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID=294
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID=294
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID=294
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID=294

have created a BAT script). Replace the value of the variables with the location of your
Java home directory, EC2, and RDS command-line tools, the directory where you
downloaded your key, and your secret keys.

#!/bin/bash
export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home
export EC2_HOME=/Users/arjan/src/ec2-api-tools-1.3-46266
export AWS_RDS_HOME=/Users/arjan/src/RDSCli-1.1.005
export PATH="$EC2_HOME/bin:$AWS_RDS_HOME/bin:$PATH"

export EC2_KEY_DIR=/Users/arjan/.ec2
export EC2_PRIVATE_KEY=${EC2_KEY_DIR}/pk-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem
export EC2_CERT=${EC2_KEY_DIR}/cert-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem

You can now run the script in your terminal with source initaws. Let’s see if this worked
by invoking another command, ec2-describe-regions:

$ ec2-describe-regions
REGION eu-west-1 ec2.eu-west-1.amazonaws.com
REGION us-east-1 ec2.us-east-1.amazonaws.com
REGION us-west-1 ec2.us-west-1.amazonaws.com
REGION ap-southeast-1 ec2.ap-southeast-1.amazonaws.com

We will soon discuss the concept of regions, but if you see a list similar to this, it means
your tools are set up properly. Now you can do everything that AWS offers you. We’ll
take a look at the AWS Console next. The command-line tools offer something unique,
though: we can easily create scripts to automate working with AWS. We will show that
later on in this chapter.

In this book, we mostly use the credentials of the account itself. This
simplifies working with AWS, but it does not comform to industrial-
grade security practices. Amazon realized that and introduced yet an-
other service, called Identity and Access Management (or IAM). With
IAM, you can, for example, create users with a very limited set of rights.
We could create a user s3 that can access only the S3 service on any S3
resources of our account:

$ iam-usercreate -u s3 -k
AKIAID67UECIAGHXX54A
py9RuAIfgKz6N1SYQbCc+bFLtE8C/RX12sqwGrIy

Setting Up Your Environment | 19

$ iam-useraddpolicy -u s3 -p S3_ACCESS \
 -e Allow -a "s3:*" -r "*"

When creating the user, the -k option indicates that a set of access keys
should be created for this new user. You can create users for the sole
purpose of making backups that have access only to SimpleDB and EBS
snapshot creation, for example. Creating IAM users reduces the risk of
a breach of your instances. This simple example does absolutely no jus-
tice to IAM, other than mentioning it. To learn more, visit AWS Identity
and Access Management (IAM) (http://aws.amazon.com/iam/) page on
the AWS portal.

It is good to be aware of one particular AWS tool relating to IAM and
security policies on AWS. Creating a policy can be somewhat over-
whelming; trying to figure out all the different privileges and service
names requires a lot of patience and determination. But, just recently,
AWS introduced the AWS Policy Generator (http://awspolicygen.s3.am
azonaws.com/policygen.html). With this online tool, you can easily gen-
erate policies to be added to S3, EC2, or any of the other available AWS
services.

AWS Console
What is there to say about the AWS Console? We have been using it ever since it was
launched. There are some changes we would like to see, but it is a very complete tool
(Figure 2-3).

Figure 2-3. AWS Console

20 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

http://aws.amazon.com/iam/
http://aws.amazon.com/iam/
http://aws.amazon.com/iam/
http://awspolicygen.s3.amazonaws.com/policygen.html
http://awspolicygen.s3.amazonaws.com/policygen.html
http://awspolicygen.s3.amazonaws.com/policygen.html

We can do most basic AWS tasks with the AWS Management Console. At the time of
this writing, it offers Amazon S3, Amazon EC2, Amazon VPC, Amazon Elastic Map-
Reduce, Amazon CloudFront, Amazon RDS, and Amazon SNS.

Other Tools
With the Amazon Web Console and the command-line tools, we have nearly everything
we need. The only thing missing is something to help us monitor and fix problems
when they arise. Because AWS is 100% virtual, you don’t need to replace broken hard-
ware anymore. It is not necessary to go anywhere to fix malfunctioning components of
your infrastructure. It is even possible to fix the encountered problems from a smart-
phone.

We checked what’s out there for managing Amazon clouds on a smartphone, but we
didn’t find tools that were sufficient for our needs. We wanted a single application to
monitor and manage our infrastructure. With smartphone platforms like iOS from
Apple, you can get a long way. But the limited functionality offered for background
processes in iPhone sets a limit to what you can do with your application in terms of
monitoring. Therefore, we chose Android to develop an application called Decaf. With
Decaf, you can manage and monitor a virtual infrastructure built on AWS.

There are alternative monitoring applications and services we could use, but most are
quite expensive. Often, alerting is part of a more extensive monitoring platform like
Nagios or Cacti. We prefer to use Amazon CloudWatch, though, and the only thing
we need is simple monitoring. In later chapters, we’ll discuss CloudWatch in depth
and show how to operate your infrastructures.

Choosing Your Geographic Location, Regions, and Availability
Zones
With our tools set up, we can get to work. Let’s start building the infrastructure for the
Kulitzer application. First thing is choosing a region where our servers will live. At this
moment, we can choose from the following:

• EU West—Ireland (eu-west-1)

• US East—Nothern Virginia (us-east-1)

• US West—California (us-west-1)

• Asia Pacific—Singapore (ap-southeast-1)

Joerg Seibel and his team develop and maintain Kulitzer, while we (the authors) build
the infrastructure in the Netherlands. But the regions Kulitzer will be targeting at the
start are the United States and Europe.

Choosing Your Geographic Location, Regions, and Availability Zones | 21

US East, the first region to appear, is relatively close to the majority of customers in
both the United States and Europe. The European region was launched soon afterward,
making it possible to target these regions individually. In the case of Kulitzer, we had
to make a choice, because we have limited funds. US East is also the default region,
and slightly less expensive than the others, so it’s the best option for us.

Every region has a number of availability zones. These zones are designed to be phys-
ically separated but still part of one data network. The purpose of different availability
zones is to make your infrastructure more resilient to failures related to power and
network outages. At this point, we will not utilize this feature yet, but we will have to
choose the right availability zone in some cases.

If you work with AWS, it is good to know that the tools operate by default on the US
East region. If you don’t specify otherwise, everything you do will be in this region.
There is no default availability zone, though. If you don’t specify an availability zone
when you create an instance, for example, AWS will choose one for you.

Choose an Architecture
So, US East it is. What is next? Our application is standard, three-tiered; we have a
database, an application server, and a web server. We have to build a small architecture,
so we’ll combine the application and web server. We do have the luxury of offloading
the dumb traffic to Amazon CloudFront, a content distribution network we can utilize
as a web server. The initial architecture will look like the one shown in Figure 2-4.

Our operating system of preference is Ubuntu, but you can run various other flavours
of Linux, OpenSolaris, or Windows Server 2003/2008. Our Rails stack consists of Rails
web framework 2.3.5, Apache web server, and Passenger to facilitate deployments. The
server will also be sending mail, for which we use Postfix. The actual installation is
beyond the scope of the book. We’ll get you on the EC2 Ubuntu instance, where can
you continue installing your application.

Creating the Rails Server on EC2
Ok, here we go! Amazon Elastic Compute Cloud (EC2) is the heart of AWS. It consists
of many different assets you need to understand before an EC2 instance (server) be-
comes operational. The different features will be introduced in order in which they are
needed.

Create a Key Pair
Key pairs is one of the ways AWS handles security. It is also the only way to get into
your fresh instance the first time you launch it. You can create a Secure Shell (SSH) key

22 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

pair and pass it on to the instance you launch. The public key will be stored in the
instance in the right place, while you keep the private key to log in to your instance.

You can create a key pair through the Amazon Web Console. Go to Key Pairs and click
Create Key Pair. Give it a name and store the downloaded private key somewhere safe
(Figure 2-5)—you won’t be able to download it again.

You can also import your own existing SSH key pair to AWS using the ec2-import-
keypair command, like in the following example:

ec2-import-keypair --region us-east-1 --public-key-file .ssh/id_rsa.pub flavia

where flavia will be the name of the key pair. You have to import your key pair to each
region where you will use it.

Figure 2-4. Kulitzer architecture v1.0

Creating the Rails Server on EC2 | 23

Remember when we set up the command-line tools? If you look at that
script, you can see we created a directory for the other certificates. This
is a good place to store the key pair too. It also gives you a way to organize
your files if you work with multiple AWS accounts.

Finding a Suitable AMI
An AMI is like a boot CD. It contains the root image with everything necessary to start
an instance. There are many publicly availabe AMIs, and you can create your own
preconfigured one for your needs. The available operating systems include various fla-
vours of Linux, Windows, and OpenSolaris. Often, AMIs are simply referred to as
images.

There are two different kinds of AMIs. The “old” kind of AMI is stored on S3. Launch-
ing an instance from an S3-backed AMI (as they are called) gives you an instance with
the root device in the machine itself. This is a bit abstract, but remember that devices
that are part of the instance itself are gone when the instance is gone. AWS uses the
term ephemeral storage for these devices. This is also the reason why instances launched
from an S3-backed AMI cannot be stopped and started; they can only be restarted or
terminated.

Figure 2-5. Create a key pair

24 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

The other, newer kind of AMI is stored in EBS. The most important difference for now
is that the root device is not ephemeral anymore, but an EBS volume (EBS will be
described in detail later) will be created that can survive the instance itself. Because of
this, an EBS-backed instance can now be stopped and started, making it much easier
to use the instance only when you need it. A stopped instance does not cost you any-
thing apart from the EBS storage used.

EBS-backed AMIs are much more convenient than S3-backed AMIs.
One of the drawbacks, though, is that these AMIs are not easily trans-
ferred. Because an S3-backed AMI is in S3 (obviously), you can copy it
around, anywhere you want. This is problematic for EBS-backed AMIs.
A situation where this poses a problem is if you want to migrate your
instances and/or AMIs to another region.

We are most familiar with Ubuntu. For Ubuntu, you can use the Canonical (derived)
AMIs. The first good source for Ubuntu AMIs was Alestic (http://alestic.com/). Though
Ubuntu now builds and maintains its own EC2 AMIs (http://cloud.ubuntu.com/ami/),
but we still find ourselves going to Alestic.

The web console allows you to search through all available AMIs. It also tells if the AMI
is EBS- or S3-backed; an instance-store Root Device Type means S3-backed, and ebs
means EBS-backed. For example, in Figure 2-6, we filtered for AMIs for Ubuntu 10.4,
and two are listed. One is of type instance-store and the other one ebs. However, the
console does not really help you in determining the creator of the image, so be sure you
are choosing exactly the image you intend to use by getting the AMI identifier from its
provider (in our case, Alestic).

For now, there is one more important thing to know when you are looking for the right
AMIs. Instances are either 32-bit or 64-bit. AMIs, obviously, follow this distinction.
An AMI is either 32-bit or 64-bit, regardless of how they are backed. We want to start
small, so we’ll choose the 32-bit AMI for launching a small instance.

Setting Up the Web/Application Server
Before you actually select the AMI and click Launch, let’s take a look at what an instance
is. An instance is the virtual counterpart of a server. It is probably called an instance
because it is launched from an immutable image. Instances come in types (http://aws
.amazon.com/ec2/instance-types/). You can think of a type as the size of instance. The
default type is Small, which is a 32-bit instance. The other 32-bit instances are Micro
and High-CPU Medium. Micro instances support both 32- and 64-bit architecture, and
all the others are all exclusively 64-bit instances. This is important because it shows
you that scaling up (scaling by using a bigger server) is quite constrained for 32-bit
instances (you can launch any type of 64-bit instance from a 64-bit AMI). A micro

Creating the Rails Server on EC2 | 25

http://alestic.com/
http://alestic.com/
http://cloud.ubuntu.com/ami/
http://cloud.ubuntu.com/ami/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

instance costs approximately US$0.02 per hour. On the other end, a Quadruple Extra
Large instance is available for approximately US$2.40 per hour.

According to the AWS documentation, an instance provides a “predictable amount of
dedicated compute capacity.” For example, the Quadruple Extra Large instance pro-
vides:

• 68.4 GB of memory

• 26 EC2 compute units (8 virtual cores with 3.25 EC2 compute units each)

• 1690 GB of instance storage

• 64-bit platform

• High I/O performance

• API name: m2.4xlarge

AWS describes an EC2 compute unit like this: “One EC2 Compute Unit provides the
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. This
is also the equivalent to an early-2006 1.7 GHz Xeon processor referenced in our orig-
inal documentation. Over time, we may add or substitute measures that go into the
definition of an EC2 Compute Unit, if we find metrics that will give you a clearer picture
of compute capacity.”

Figure 2-6. Find your AMIs

26 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

Launch an instance (Request Instances Wizard)

The AWS Console guides you through the process of launching one or more instances
with the Request Instances Wizard. We’ll use this wizard to explain what it means to
launch an instance. Step one is choosing the AMI. As we said, we use Ubuntu and the
public i386 Ubuntu Lucid 10.04 AMI from Alestic.

Next, we have to determine the instance details. You can set the number of instances
you want to launch; we only need one. You can explicitly choose your availibility zone,
but we’ll let AWS choose a zone for now. And because this AMI is for 32-bit instances,
we can choose between Micro, Small, and High-CPU Medium. You can either launch
an instance or request a spot instance.

For new users, there is a limit of 20 concurrent instances. If you need
more than 20 instances, you request it from Amazon by filling out the
Request to Increase Amazon EC2 Instance Limit form (http://aws.ama
zon.com/contact-us/ec2-request/).

We’ll leave the Advanced Instance Options on their default settings; the option of
interest here is CloudWatch Monitoring, which we’ll talk about later. All instances
have basic monitoring enabled by defaut, but we can enable detailed monitoring once
the instance is running.

In the following step, you can add tags to your instance or key-value pairs for the
purpose of easily identifying and finding it, especially when you have a bigger infra-
structure. The identifier of an instance is not very user-friendly, so this is a way to better
organize your instances. This use of tags is also available for other EC2 components,
such as images, volumes, etc.

Next, we can create a key pair or choose an existing one. We created our key pair before,
so we’ll select that one. This will allow us to access the new instance. When launched,
the public key is added to the user called “ubuntu” (in our case) and we can log in with
the private key we downloaded when creating the key pair. As we said before, we’ll
create our own images later on, including users and their public keys, so that we can
launch without a key pair.

The last step before launching is to choose the security groups the instance will be part
of. A security group defines a set of firewall rules or allowed connections, specifying
who can access the instance and how. You can define who has access by using an IP
address, IP range, or another security group. You specify how it can be accessed by
specifying TCP, UDP, or ICMP in a port or range of ports. So, for example, there is a
default security group provided by Amazon, which allows all network connections
coming from the same default group.

Several instances can use the same security group, which defines a kind of profile. For
example, in this case, we will define a security group for the web server, which we can

Creating the Rails Server on EC2 | 27

http://aws.amazon.com/contact-us/ec2-request/
http://aws.amazon.com/contact-us/ec2-request/
http://aws.amazon.com/contact-us/ec2-request/

then apply to all the web server instances if we scale out. Also, an instance can have
several security groups, each adding some set of rules. Security groups are a very pow-
erful way of specifying security restrictions. Once the system is running, you cannot
add or remove instances from security groups. You can, however, change a security
group by adding and/or removing new allowed connections.

We will create a security group that allows SSH, HTTP, and HTTPS connections from
any IP address.

The security groups screen in the wizard is called Configure Firewall.
We tend to think of security groups as a combination of a firewall and
VLANs (Virtual LANs). A security group is its own little network, where
instances within a group can freely communicate without constraints.
Groups can allow connections to other groups, again, unconditionally.
And you can selectively open a group to an outside address or group of
addresses. It is straightforward to create DMZ (demilitarized zones) for
a database or group of application servers.

With everything set up, we can review what we did and launch our instance (Figure 2-7).

Of course, we could have done it quicker using the command-line tools. It would not
have been so informative, but next time, you can do exactly the same with the following
commands (you only have to create the key pair and security group once):

Figure 2-7. Ready to launch an instance

28 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

create the key pair
$ ec2-add-keypair arjan

create a security group called 'web'
$ ec2-add-group web -d 'All public facing web (port 80 and 443) instances'
$ ec2-authorize web -P tcp -p 22 -s 0.0.0.0/0
$ ec2-authorize web -P tcp -p 80 -s 0.0.0.0/0
$ ec2-authorize web -P tcp -p 443 -s 0.0.0.0/0

launch an instance
$ ec2-run-instances ami-714ba518 \
 --instance-count 1 \
 --instance-type m1.small \
 --key arjan \
 --group web

Notice that the IP range is specified using CIDR (Classless Inter-Domain Routing).

Setting up the instance

Our new instance is launching and shouldn’t take very long. Once the instance is avail-
able, we are going to prepare it for Rails. Installing Rails is beyond the scope of this
book. Preparing the instance for something else like PHP or Django is not fundamen-
tally different. Let’s first try to log in to our new instance using the certificate of the key
pair, the user ubuntu, and what is shown in the console as Public DNS for the instance:

$ ssh -i ~/.ec2/arjan.pem ubuntu@ec2-184-72-128-63.compute-1.amazonaws.com

If you end up in a bash shell, logged in as ubuntu, you can claim success! You are now
able to do everything without a password. Not really a nice idea, so we usually add at
least one user to make sure we don’t make it too easy for those who mean us harm.

Setting up the instance is, in principle, the same as setting up a physical server. There
are a number of interesting differences, though, and we can use some of them to make
life easier. Just like most physical servers, an EC2 instance comes with local disk storage.
This storage lives as long as the instance lives. For EBS-backed instances, this means it
persists when stopped, but vanishes when terminated. It also means it is gone when
the instance unexpectedly dies.

To persist this local disk storage, we have two options: one way is to create an image
based on the instance, and the other way is to use EBS volumes. An image is immutable,
which means changes to the instance after the image has been created do not change
the image. An EBS volume, however, is independent. You can attach an EBS volume
to only one instance at a time. Another interesting feature of EBS volumes is that you
can take incremental snapshots. We’ll use this for our backup solution.

As an example, if you have a web application, you will most probably want to create
an image containing all the installed software you need on it (e.g., Apache, Rails), since
you will not change that frequently. You could save the web content itself in a volume
so you can update it and make backups of it regularly.

Creating the Rails Server on EC2 | 29

EBS volumes are quite reliable, but you can’t trust them to never die on
you. An EBS volume is spread over several servers in different availability
zones, comparable to RAID. Some people use a couple of volumes to
create their own RAID, but according to AWS, “mirroring data accross
multiple Amazon EBS volumes in the same availability zone will not
significantly improve your volume durability.” However, taking a snap-
shot basically resets the volume, and a volume is more likely to fail when
it is older.

We use snapshots as a backup/restore mechanism; we take regular
snapshots and hardly have any volume failures. As the EBS documen-
tation (http://aws.amazon.com/ebs/) states, “The durability of your vol-
ume depends both on the size of your volume and the percentage of the
data that has changed since your last snapshot.[...] So, taking frequent
snapshots of your volume is a convenient and cost effective way to in-
crease the long term durability of your data.”

When an instance is launched, AWS assigns it an IP address. Every time the instance
is stopped, this IP address vanishes as well—not really ideal. AWS’ solution is the use
of Elastic IPs (EIPs). You can request an EIP and assign it to your instance every time
you start/launch it again, so you always keep the same IP address. For now, you can
assign only one EIP per instance. The interesting thing about EIPs is that they are only
free when used, a nice incentive not to waste resources. In case you plan to send mail,
an EIP also gives you the opportunity to ask AWS to lift email restrictions (https://aws
-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-re
quest).

An EIP is referred to by its IPv4 address, for example 184.72.235.156.
In the console, but also with the command-line tools, all you see is that
addres. But if you assign this EIP to an instance, you see that the in-
stance’s public DNS changes to ec2-184-72-235-156.compute-1.ama-
zonaws.com. This address refers to the private IP address internally and
the public IP externally. For data transfers between instances using the
public IP, you will pay the regional data transfer rates. So, if you con-
sistently use the DNS name related to the EIP you not only reduce the
network latency, you also avoid paying for unnecessary data transfers.

We can do most of this work we do from the Console, but all of it can be executed from
the command line. This means we can script an instance to provision itself with the
proper EBS volumes and associate the right EIP. If your instance dies, for whatever
reason, this will save you valuable minutes figuring out which EIP goes where and which
EBS volume should be attached to what device.

Let’s look at how to create and use EBS volumes in your instance and assign an EIP to
it.

30 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request
https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request
https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request
https://aws-portal.amazon.com/gp/aws/html-forms-controller/contactus/ec2-email-limit-rdns-request

Remember that we didn’t specify the availability zone
when launching our instance? We need to figure out which availability zone our in-
stance ended up in before we create an EBS volume. Our instance ended up in us-
east-1b. A volume can only be attached to one instance at the same time, and only if
the volume and instance are in the same availability zone. An instance can have many
volumes, though. Kulitzer will have a lot of user content, but we plan to use Amazon
S3 for that. We’ll show later how we use S3 as a content store for this application. For
now, it is enough to know that we don’t need a large volume, a minimum of 1 GB is
enough.

You can’t enlarge a volume directly. If you need to make your volume
bigger, you need to create a snapshot from it, then create a bigger volume
from that snapshot. Then you will need to tell the filesystem that your
paritition is larger, and the way to do that depends on the specific file-
system you are using. For XFS like we are using in the examples, it’s
quite simple—you use the command xfs_growfs /mount/point.

Once your volume is available, you can attach it to the instance right from the same
screen, by specifying your device. Because it is the first volume we attach, /dev/sdf is
the most logical choice. Within moments you should see the device. We want an XFS
volume, mounted at /var/www. On Ubuntu, this is all it takes (provided you installed
the required packages and your mountpoint exists):

$ mkfs.xfs /dev/sdf
$ mount -t xfs -o defaults /dev/sdf /var/www

If you are using Ubuntu, you will need to install the package for XFS
with apt-get install xfsprogs and create the directory /var/www (if it
doesn’t already exist). mkfs.xfs will build an XFS filesystem on the vol-
ume, which can then be mounted.

If you are used to adding your mounts to /etc/fstab, it is better you
don’t do that in Ubuntu Lucid 10.04 and later. In previous versions, the
boot process continus even if it is unable to mount all specified mount
points. Not anymore. If later versions of Ubuntu encounter an un-
mountable mountpoint, it just halts, making your instance unreachable.
We just specify the full mount command in our startup script, which
we’ll show later.

There is really not much to it. You create an EIP from the
AWS Console by clicking on Allocate New Address in the Elastic IPs section. Then you
can associate it to a running instance by clicking on Associate. It is basically making
sure you keep your IP addresses, for example, for DNS. Keep in mind that when you
stop an instance, the EIP is disassociated from the instance.

Creating and using an EBS volume.

Creating and associating an EIP.

Creating the Rails Server on EC2 | 31

Now would be a good time to install your web server and other soft-
ware you need, such as Apache and Rails in our example.

Creating a custom image

Your instance is ready and it works. You have an Ubuntu server that you can connect
to through SSH, HTTP, and HTTPS. This instance has an EBS volume attached to it,
which will contain your web application content, and a static IP associated using an
EIP. Your web server has been set up as well.

The only thing missing is to set up the database. But before doing that, it is better to
prepare for other situations and save your work in a new image. Suppose you want to
scale up, to use the much better performing High-CPU Medium instance; in this case,
you will need an image to launch it from. Or suppose you lose your instance entirely
and you don’t want to recreate the instance from scratch. Apart from an unhappy
customer, boss, or hordes of angry users, it is just tedious to do everything over again.

To scale or recover quickly, you can create a custom image. With this image, you can
easily launch another instance with all software installed. Creating an image is straight-
forward. You can either do it from the Console or use the following commands:

stop the instance explicitly, and detach the volume
$ ec2-stop-instances i-8eda73e4
$ ec2-detach-volume vol-c00177a9

create an image for this instance, with the given name and description

Install the software.

Figure 2-8. AWS Management Console

32 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

$ ec2-create-image i-8eda73e4 -n app-server-20100728 -d 'Rails Application Server'

start the instance again, attach the volume and associate elastic ip
$ ec2-start-instances i-8eda73e4
$ ec2-attach-volume vol-c00177a9 -i i-8eda73e4 -d /dev/sdf
$ ec2-associate-address 184.72.235.156 -i i-8eda73e4

This might be the first time you use the command-line tools. If you do
not see what you expect to see, like your instance or volumes, you might
be working in a region other than the default region. The command-line
tools accept —-region to work somewhere else. For example, to list in-
stances in Europe (Ireland) you can use ec2-describe-instances —-
region eu-west-1. For a full list of available regions, you can use the
command we used to test the command-line tools: ec2-describe-
regions.

There are a couple of things you need to know. First, if you don’t detach the volume,
ec2-create-image will create a snapshot of the volume as well. When launching a new
instance it will not only create a new root volume, but also a new volume with your
application. For this setup, you don’t want that; you will use the existing volume.
Second, stopping the instance is not really necessary, according to AWS. You can even
specify —no-reboot when creating the image, but the integrity of the filesystem cannot
be guaranteed when doing this. We will take no chances, we’ll stop the instance ex-
plicitly. And finally we don’t disassociate the EIP, as this is done automatically.

We could launch a new instance, and perhaps it is even a good idea to test whether the
image works. But we have to do one other thing. We don’t want to attach volumes
manually every time we launch an instance of this image. Also, attaching the volume
does not automatically mount the volume. Furthermore, we don’t want to associate
the EIP ourselves—we want to launch an instance that provisions itself.

For an instance to provision itself, we need some
way to execute the proper commands at boot/launch time. In Ubuntu, we do this with
init scripts. For other operating systems, this might be slightly different, but the general
idea can be applied just the same. On your instance, create the file /etc/init.d/ec2, making
sure it is executable and contains the following script:

#!/bin/bash
BEGIN INIT INFO
Provides: ec2-instance-provisioning
Required-Start: $network $local_fs
Required-Stop: $apache2
Should-Start: $named
Should-Stop:
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: ec2 housekeeping
Description: attach/detach/mount volumes, etc.
END INIT INFO

Provisioning the instance at boot/launch.

Creating the Rails Server on EC2 | 33

#
ec2-elastic - do some ec2 housekeeping
(attaching/detaching volumes, mounting volumes, etc.)
#

export JAVA_HOME='/usr'
export EC2_KEY_DIR=/root/.ec2
export EC2_PRIVATE_KEY=${EC2_KEY_DIR}/pk-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem
export EC2_CERT=${EC2_KEY_DIR}/cert-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem
export EC2_HOME='/root/ec2-api-tools-1.3-53907'
export EC2_URL="https://eu-west-1.ec2.amazonaws.com"
PATH=$PATH:$HOME/bin:$EC2_HOME/bin
MAX_TRIES=60

prog=$(basename $0)
logger="logger -t $prog"
curl="curl --retry 3 --silent --show-error --fail"
this URL gives us information about the current instance
instance_data_url=http://169.254.169.254/latest
region="eu-west-1"
elastic_ip=184.72.235.156

vol="vol-c00177a9"
dev="/dev/sdf"
mnt="/var/www"

Wait until networking is up on the EC2 instance.
perl -MIO::Socket::INET -e '
 until(new IO::Socket::INET("169.254.169.254:80"))
 {print"Waiting for network...\n";sleep 1}
' | $logger

start/stop functions for OS

start() {
 ctr=0
 # because the instance might change we have to get the id dynamically
 instance_id=$($curl $instance_data_url/meta-data/instance-id)

 /bin/echo "Associating Elastic IP."
 ec2-associate-address $elastic_ip -i $instance_id --region=$region

 /bin/echo "Attaching Elastic Block Store Volumes."
 ec2-attach-volume $vol -i $instance_id -d $dev --region=$region

 /bin/echo "Testing If Volumes are Attached."
 while [! -e "$dev"] ; do
 /bin/sleep 1
 ctr=`expr $ctr + 1`
 # retry for maximum one minute...
 if [$ctr -eq $MAX_TRIES]; then
 if [! -e "$dev"]; then
 /bin/echo "WARNING: Cannot attach volume $vol to $dev --
 Giving up after $MAX_TRIES attempts"

34 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

 fi
 fi
 done

 if [-e "$dev"]; then
 if [! -d $mnt]; then
 mkdir $mnt
 fi

 /bin/echo "Mounting Elastic Block Store Volumes."
 /bin/mount -t xfs -o defaults $dev $mnt
 fi
}

stop() {
 /bin/echo "Disassociating Elastic IP."
 ec2-disassociate-address $elastic_ip --region=$region

 /bin/echo "Unmounting Elastic Block Store Volumes."
 /bin/umount $mnt

 ec2-detach-volume $vol --region=$region

}

case "$1" in
 start)
 start
 ;;

 stop)
 stop
 ;;
 restart)
 stop
 sleep 5
 start
 ;;
 *)
 echo "Usage: $SELF {start|stop|restart}"
 exit 1
 ;;

esac

exit 0

You will need to have the EC2 command-line tools installed on your instance. Replace
the environment variables accordingly. Remember to change to the region you are using
if it’s not us-east-1, and use your EIP and volume ID.

Make sure the operating system actually executes the script at startup. In Ubuntu, you
can do it like this:

Creating the Rails Server on EC2 | 35

$ update-rc.d ec2 defaults

Create a new image the same way as before and try it by launching an instance (make
sure you choose the right availability zone). You should have a new instance with a
brand new instance identifier but the same volume for the application and EIP address
(if you stop now, you don’t have to detach the volume anymore). If you want to scale
up or if you run into trouble, just stop or terminate your old instance and start a new
one.

One last tip before we continue with the database. When going through
the Request Instances Wizard, you may have wondered what a spot
instance is. AWS describes them as follows:

They allow customers to bid on unused Amazon EC2 capacity
and run those instances for as long as their bid exceeds the
current Spot Price. The Spot Price changes periodically based
on supply and demand, and customers whose bids meet or
exceed it gain access to the available Spot Instances.

You can configure your Spot Request to be closed when the spot price
goes above your maximum price, or to keep the request open and create
another instance the next time the price goes below your maximum.

Another often-used way to make your instance do some particular work at
launch time is called user data. When you launch an EC2 instance, you give it some
data in the form of an executable shell script to be performed at boot. You can use this
to do some additional configuration or even installation of software.

You can create this script on your development machine and pass it in the command
that will launch your instance:

$ ec-run-instances --user-data-file my-local-script.sh ami-714ba518

The drawback of this method of provisioning your instance is that you can not repro-
vision a running instance. If, for example, you upgrade your application and you need
to update your instance with the new sources, you will have to add the script to the
instance (or image) explicitly, making it pointless to send it through user data. If you
don’t have the need to reprovision or or if launching a new instance for upgrading is
OK for your system, this method is fine.

RDS database
If you have gotten this far, you have probably noticed our love for Amazon RDS. In
case you didn’t, we love this service. Setting up and maintaining a MySQL database
doesn’t appear to be too difficult. But setting it up properly, with a backup/restore
mechanism in place, perhaps even replicated for higher availability and tuned for op-
timal performance, is difficult. As your traffic grows, it is inevitable that you will have

User data.

36 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

to scale up. And as your application becomes more important, you will want to im-
plement replication to minimize downtime, and you will have to keep the database
software up to date.

Amazon introduced RDS not too long ago. RDS provides almost everything you need
to run a production-grade database server, without the immediate need for a database
administrator, or DBA. Often, the DBA also helps with optimizing the schemas. Of
course, RDS is not capable of doing that for you, but it will take care of backups for
you, so you will not lose more than five minutes of data in case of a crash and you can
go back in time to any second during a period of up to the last eight days. It will
automatically upgrade the MySQL database software for you, provide enhanced avail-
ability in multiple zones, and read replicas to help you scale.

We need to get a bit technical, but here is one very important, not-too-
well-documented feature; if you use MyISAM as your storage engine,
you do not get an important part of the backup functionality.

There are two kinds of backups; snapshots and Restore to Point in Time.
The first is manual and tedious, the second is the best thing since sliced
bread. Backups are available with MyISAM, but you have to make your
databases readonly before you take a snapshot. If you want to use Re-
store to Point in Time backups, make sure you use InnoDB as the storage
engine for all the tables in all the databases in your RDS instances.

When importing your old database, you can start with InnoDB by not
specifying the storage engine. If you want to migrate from MyISAM to
InnoDB, take a look at the MySQL documentation (http://dev.mysql
.com/doc/refman/5.1/en/converting-tables-to-innodb.html).

Before we continue, make sure you sign up for Amazon RDS (http://aws.amazon.com/
rds/). At this time, almost all of the functionality of RDS is available through the Con-
sole. What is missing is important, and we need those features to set up the DB instance
the way we want. You already downloaded the Amazon RDS Command Line Toolkit
(http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&cate
goryID=294) and added the necessary environment variables to your script in the pre-
vious section, so nothing is stopping you from creating an RDS instance.

Creating an RDS Instance (Launching the DB Instance Wizard)
This wizard is familiar—it looks a lot like the one for launching EC2 instances. This
wizard, though, does not allow you to create some of the necessary assets on the fly.
But, in contrast to EC2, you can change all of the options for a running DB instance.
Changing some of the options requires a restart of the database instance, either imme-
diately after making the change or during the maintenance window you will choose
later.

RDS database | 37

http://dev.mysql.com/doc/refman/5.1/en/converting-tables-to-innodb.html
http://dev.mysql.com/doc/refman/5.1/en/converting-tables-to-innodb.html
http://dev.mysql.com/doc/refman/5.1/en/converting-tables-to-innodb.html
http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID=294
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID=294
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2928&categoryID=294

It is a good idea to create a DB security group first, if you don’t want to use the
default. You can create the DB security group through the AWS Console and add the
authorizations. An authorization is a security group from an EC2 account that allows
you to share RDS instances easily accross multiple accounts. Alternatively, you can
specify a CIDR/IP, much like we did for the EC2 security groups. For now, we will
allow everyone access to the DB instances in this group. Later, we’ll restrict that access
again. You can add a DB instance to multiple DB security groups, giving you the nec-
essary flexibility in case you work with multiple EC2 accounts.

The DB Instance Details screen allows you to set the most important options. Multi-
Availability Zone (multi-AZ) deployment is the high-availability option of RDS, creat-
ing a second, replicated DB instance in another zone. It is twice as expensive, but it
gives you automatic failover in case of emergency and during maintenance windows.

You also have to indicate the allocated storage. The storage you allocate does not restrict
you in what you actually consume; it only means that if you exceed the amount of
allocated storage, you pay a higher fee.

The Additional Configuration page of the wizard allows you to specify a database name,
if you want an initial database to be created when the instance is launched. Otherwise,
you can create your database(s) later. You can choose a port other than the default
3306. You can choose an availability zone, but that doesn’t matter very much because
network latency between zones is comparable to that within a zone. Later, we’ll create a
DB Parameter Group; for now, we'll use the default. Finally, you must indicate which
DB security groups you want to add this instance to.

The Management Options screen gives you reasonable defaults. If you want to be able
to restore a database from a week ago, for example, you can override the default one
day in the Backup Retention Period. Longer than a week is not possible, but you can
create DB snapshots from which you can easily launch DB instances. RDS makes back-
ups every day, whereby the log file is flushed and data is stored. During the backup
window, the database is read-only, blocking write operations until the backup is com-
pleted. It doesn’t take more than a couple of minutes. If you set the Backup Retention
Period to 0, you disable backups altogether. The maintenance window is scheduled
somewhere during the week. AWS reserves the right to automatic updates of the un-
derlying MySQL. It is not possible to disable this feature.

If you don’t want backups and maintenance to interfere with your op-
eration, you can choose to run your DB instance in multi-AZ mode.
Some of the advantages of this are that backups are done on the repli-
cated DB instance and that maintenance is conducted on the replica,
after which the RDS automatically performs a failover to do the main-
tence on the other instance.

You are now ready to launch (Figure 2-9).

38 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

Of course, as always, you can do the same on the command-line:

$ rds-create-db-security-group production \
 --db-security-group-description \
 'this RDS is only available on the necessary ports'
$ rds-authorize-db-security-group-ingress production \
 --cidr-ip 0.0.0.0/0
$ rds-authorize-db-security-group-ingress production \
 --ec2-security-group-name web \
 --ec2-security-group-owner-id 457964863276

$ rds-create-db-instance production \
 --engine MySQL5.1 \
 --db-instance-class db.m1.small \
 --allocated-storage 5 \
 --master-username kulitzer \
 --master-user-password sarasa1234 \
 --db-security-groups production \
 --backup-retention-period 3

Notice that in this example we are giving access to the world by using the CIDR
0.0.0.0/0, for convenience while setting it up, but we will have to remove it later. The
equivalent in the Amazon Console looks like Figure 2-10.

Figure 2-9. Launch the DB instance wizard

RDS database | 39

The DB instance classes resemble EC2 instance types. One of the miss-
ing classes is Medium. For EC2, the Medium instance is superior to the
Small instance, and if you have the money, always go with Medium over
Small. But with RDS we got lucky—considering the responsiveness and
performance of a Small DB instance, it appears as if it is running on a
High-CPU Medium EC2 instance, or something very similar. And all
this for a price that is only slightly higher than what you pay for a Small
EC2 instance. If you need a relational database and MySQL is an option,
you need a seriously good reason not to do this (sorry, did that just
sound too much like a fanboy?).

Is This All?
If it is this simple, how can it be so good!? There is not much else to it, actually. You
can create snapshots of your DB instance. You don’t need that for backup/restore pur-
poses if you use the backup facility of RDS. But you can create snapshots that you can
use to create preconfigured database instances with databases and data. Figure 2-11
shows the console screen for creating a DB instance from a snapshot. You can also track
what you or AWS is doing to your database with DB Events.

This is not all. Although the basic configuration of RDS instances is sufficient for many
cases, it is often required to change engine parameters. As you don’t have super privi-
leges, you need another way to change engine parameters. RDS offers DB parameter
groups to change some, but certainly not all of the available parameters. A DB parameter
group contains engine configuration values that you can apply to one or more DB
instances. AWS discourages users from using DB paramater groups, but it is necessary
for some basics like slow query logging.

At this moment, you can create the DB parameter group from the Console, but you
cannot modify the parameter values there. If you want to change actual parameters,
you can do it using the command-line tools (or API). Enabling the slow query log, for
example, is done like this:

Figure 2-10. Configure a DB security group

40 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

$ rds-create-db-parameter-group production \
 --description='custom parameter settings, for example slow_query_log' \
 --engine=MySQL5.1
$ rds-modify-db-parameter-group production \
 --parameters="name=slow_query_log, value=1, method=immediate"
$ rds-modify-db-parameter-group production \
 --parameters="name=long_query_time, value=1, method=immediate"
$ rds-modify-db-instance production \
 --db-parameter-group-name=production \
 --apply-immediately
$ rds-reboot-db-instance production

Notice that, in this case, a reboot is needed because we are assigning a new DB pa-
rameter group to the instance. If you specify the parameter changes with method=imme
diate, they will be applied immediately to all database instances in that parameter
group, only for the parameters of type dynamic. If you use method=pending-reboot or for
parameters of type static, changes will be applied upon next reboot.

Figure 2-11. Restore DB Instance

RDS database | 41

During our work with RDS, we once needed a MySQL database server
for which RDS was not sufficient. The JIRA issue tracking system re-
quires MySQL’s default storage engine to be InnoDB because it uses the
READ-COMMITED transaction level. The problem we encountered
had to do with the combination of binary logging (which RDS uses for
backups/replication) and InnoDB. MySQL only supported a binary log-
ging format of type ROW, and we couldn’t change this particular pa-
rameter.

But the version of MySQL our RDS instance was running was 5.1.45.
This particular combination of features is supported in version 5.1.47
and later. It was also interesting to see that Ubuntu’s default MySQL
package had version 5.1.41. We did not want to wait, because we didn’t
know how long it would take. We set up a simple MySQL database on
the instance itself with a binary log format of ROW. At the time of this
writing, RDS supports engine version 5.1.50.

S3/CloudFront
Most simple web applications are built as three-tier architectures. You might not even
be aware of this, as it is (most of the time) unintentional. The three tiers of these ap-
plications are:

1. Data, usually kept in a relational database

2. Logic, dynamic content generated in a web or application server

3. Presentation, static content provided by a web server

Over time, web development frameworks slowly lost the distinction between the logic
and presentation level. Frameworks like PHP, Ruby on Rails, and Django rely on
Apache modules, effectively merging the logic and presentation levels. Only when per-
formance is an issue will these two layers be untangled, mainly because the overhead
of Apache is not necessary to serve semistatic content.

But there is another alternative—CloudFront. Amazon CloudFront is a content distri-
bution network, designed to bring static content as close to the end user as possible. It
has edge locations all over the world, storing your files and delivering them upon re-
quest. Perhaps we don’t need the edge locations yet, but we can use CloudFront for its
scalability and to offload our application server. We’ll use CloudFront as the presen-
tation tier in our three-tiered architecture.

Setting Up S3 and CloudFront
Amazon S3 is a regional service, just like EC2 and RDS, while CloudFront is a global
service. S3 works with buckets, and CloudFront works with distributions. One Cloud-
Front distribution exposes the content of one S3 bucket (one bucket can be exposed

42 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

by multiple distributions). CloudFront can serve content for download and streaming,
provided the content allows to be streamed.

At this moment, we want to store and serve the static content from S3/CloudFront.
Because our application server is in the US East region (the default region), we create
our S3 bucket in the same region, though in the Console this region is called US Stand-
ard (Figure 2-12).

S3 was only recently added to the Amazon AWS Console. We have
worked with quite a few S3 applications, but are slowly switching to
using the Console for our S3-related work. It is sufficient because we
don’t need it very often and it is close to CloudFront, so we can quickly
switch between the two.

With our S3 bucket, we can create the CloudFront distribution (Figure 2-13). One of
the interesting things of CloudFront is that you can easily expose one distribution
through multiple domains. We plan to have all static content accessible through
static[0..3].kulitzer.com. We will configure Rails to use these four domains to speed
up page load times, since the browser will then be able to download several assets in
parallel. This technique is one of the core features in Rails. For other frameworks, you
might have to do some extra work to use several different domains.

Figure 2-12. Create a bucket

S3/CloudFront | 43

It might take a little while before your distribution is enabled. AWS has already deter-
mined the domain for the distribution: d2l9lx40wmdm9x.cloudfront.net. Using this do-
main, we can add the CNAME records to our DNS.

Static Content to S3/CloudFront
The distribution we just created serves content from the S3 bucket. We also created
four domains pointing to this bucket. If we add content to the S3 bucket it will be available
from our CloudFront distribution through these domains. We want to serve our Java-
script, CSS, and other static content like images from CloudFront. In Rails, this is fairly
simple if you use the URL-generating helpers in AssetHelper. Basically, the only two
things you need to do are to configure config.action_controller.asset_host to point
to the proper asset hosts and upload the files to S3. We set the configuration in config/
environments/production.rb like this:

Enable serving of images, stylesheets, and javascripts from an asset server
config.action_controller.asset_host = "http://static%d.kulitzer.com"

Rails will replace the %d with 0, 1, 2, or 3.

After uploading the static content to the S3 bucket (make sure you make these objects
public), the Kulitzer logo is served from http://static2.kulitzer.com/images/logo.jpg or
one of the other domains. The result is that the assets a page needs are evenly requested

Figure 2-13. Create a distribution

44 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

http://static2.kulitzer.com/images/logo.jpg

from the different domains, allowing your browser to download them in parallel. Fig-
ure 2-14 shows our Kulitzer site set up using EC2, RDS, S2, and CloudFront.

Apart from increasing the scalability of your infrastructure, you also
implemented one of the patterns for optimizing the performance of your
web app. For Kulitzer, we use AssetPackager to optimize and simplify
working with CloudFront even more. AssetPackager merges the Java-
script and CSS files into one, speeding up load times.

One important aspect of CloudFront is how it distributes the assets from S3 to the edge
locations. The edge locations get new copies at most within 24 hours, but it is usually
much quicker than that. You can override this behaviour by specifying Cache-Con
trol, Pragma, or Expires headers on the object in S3. If you specify an expiration time
of less than one hour, CloudFront uses one hour. If you want to force a particular object
to be changed immediately, you can invalidate it by calling the Invalidation API. Inva-
lidating a file removes it from all the CloudFront edge locations. The documentation
says it is supposed to be used under exceptional circumstances, such as when you find
an encoding error in a video and you need to replace it.

Figure 2-14. kulitzer.com

S3/CloudFront | 45

Case Study: Publitas—CloudFront to the Rescue

Publitas has developed a web application called ePublisher that enables its customers
to publish rich content online, starting from a PDF. Right after the summer of 2010,
Publitas found its dream customer. This customer was experiencing heavy web traffic
and needed help to keep up.

With a large database of interested customers, Publitas figured it would be good to start
relatively slowly, and it sent out email messages to 350,000 people. The message poin-
ted people to the online brochure consisting of descriptions of products with rich media
content like audo and video.

The response was overwhelming, and the servers couldn’t handle this. Luckily, ePub-
lisher has an export feature and the entire brochure was quickly exported to S3 and
exposed through CloudFront. Everything was on a subdomain, so the system was only
waiting for DNS to propagate the changes while rewriting incoming requests. And
everything worked flawlessly. Publitas was happy and the customer was happy.

This particular brochure saw nearly 440,000 unique IPs and 30 TeraBytes of traffic in
the first month.

Making Backups of Volumes
Backups are only there for when everything else fails. And you want to be able to go
back in time because you never know. Backing up everything is often problematic be-
cause it requires several times more storage than you need to just run the application.

With snapshots, we have the tool to easily, and very quickly, just take a snapshot of a
volume. You can later restore this snapshot to another volume. Snapshots are incre-
mental, not at the file level, but at the block level. This means you don’t need 100 times
as much storage for 100 backups—you probably need just a couple of times the size of
your volume. However, it is difficult to verify this, because we have never found out
where to see how much we use for our snapshots.

Basically, everything else you need to create a sufficient backup/restore mechanism is
a way to expire your snapshots. If we can take snapshots for which we can set the
expiration date to one week in the future or one month in the future, we have enough.
We created a couple of scripts that use SimpleDB for snapshot administration, and the
EC2 command-line utilities to take and delete snapshots.

For our backup mechanism, we use SimpleDB to administer expiration dates. And we
want our solution to be no more than two scripts, one for taking a snapshot and one
for expiring snapshots. In Linux, there are some powerful tools like date that we use to
calculate dates. Use the command man date if you want to know about calculating dates.
Furthermore, we need the EC2 command-line tools and a Perl command-line tool for
SimpleDB. See the beginning of this chapter for instructions on installing EC2.

46 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

Installing the Tools
We feel we have to take some time to go over the installation of the SimpleDB client.
Not only have we not introduced SimpleDB yet, it uses some tools that are not self
explanatory. So, here we go:

1. First, download (but don’t install yet) the Perl Library for Amazon SimpleDB.

2. Go to http://developer.amazonwebservices.com/connect/entry.jspa?externalID=
1136.

3. Look at the prerequites and install them:

$ sudo perl -MCPAN -e 'install Digest::SHA'
$ sudo perl -MCPAN -e 'install XML::Simple'
$ sudo perl -MCPAN -e 'install Bundle::LWP'
$ sudo perl -MCPAN -e 'install Crypt::SSLeay'

4. Go to the SimpleDB Cli page, http://code.google.com/p/amazon-simpledb-cli/.

5. Look for the INSTALLATION section and install the following prerequisites:

$ sudo perl -MCPAN -e 'install Getopt::Long'
$ sudo perl -MCPAN -e 'install Pod::Usage'
$ sudo perl -MCPAN -e 'install Digest::SHA1'
$ sudo perl -MCPAN -e 'install Digest::HMAC'
$ sudo perl -MCPAN -e 'install XML::Simple'

6. Install the Amazon SimpleDB Perl library following the installation guide.

7. Install the Amazon SimpleDB Perl library and the SimpleDB command-line inter-
face using the following:

$ unzip AmazonSimpleDB-2009-04-15-perl-library.zip
$ sitelib=$(perl -MConfig -le 'print $Config{sitelib}')
$ sudo scp -r Amazon-SimpleDB-*-perl-library/src/Amazon $sitelib

$ sudo curl -Lo /usr/local/bin/simpledb http://simpledb-cli.notlong.com
$ sudo chmod +x /usr/local/bin/simpledb

Before you can continue, you need to create a domain (there is one irritating deficiency
in the SimpleDB command-line interface, and that is that it does not accept a region
and always takes the default us-east-1 region):

$ export AWS_ACCESS_KEY_ID='your acces key id'
$ export AWS_SECRET_ACCESS_KEY='your secret access key'
$ simpledb create-domain snapshot

Running the Script
The backup script is called with one parameter to indicate the expiration in a human-
readable format, for example “24 hours.” We will execute these backups from the
instance itself. We use simple cron jobs, which we’ll show later, to create an elaborate
backup scheme. This is the entire backup script:

Making Backups of Volumes | 47

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1136
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1136
http://code.google.com/p/amazon-simpledb-cli/

#!/bin/bash
#
install http://code.google.com/p/amazon-simpledb-cli/
and http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1136
WARNING: make sure to install the required packages of the second as well

specify location of X.509 certificates for the ec2 command line tools
export EC2_KEY_DIR=/root/.ec2
export EC2_PRIVATE_KEY=${EC2_KEY_DIR}/pk-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem
export EC2_CERT=${EC2_KEY_DIR}/cert-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem
export EC2_ACCESS_KEY='AKIAIGKECZXA7AEIJLMQ'
export AWS_ACCESS_KEY_ID='AKIAIGKECZXA7AEIJLMQ'
export EC2_SECRET_KEY='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'
export AWS_SECRET_ACCESS_KEY='w2Y3dx82vcY1YSKbJY51GmfFQn3705ftW4uSBrHn'
export EC2_USER_ID='457964863276'
export EC2_HOME='/root/ec2-api-tools-1.3-53907'
export JAVA_HOME='/usr'
PATH=$PATH:$HOME/bin:$EC2_HOME/bin:/usr/local/bin

region="us-east-1"

if called with a parameter that is accepted by 'date --date'
it creates a date based on that value. if it is empty we take
a default expiration of 24 hours
offset=$1
if ["${offset}" == ""]
then
 offset="24 hours"
fi

expiration=$(date -u --date="${offset}" +"%Y-%m-%d %H:%M:%S")
if ["$expiration" == ""]
then
 exit 0
fi

vols=("vol-c00177a9")

mountpoints=("/var/www")

for ((i = 0; i < ${#vols[@]}; i++))
do
 xfs_freeze -f ${mountpoints[i]}
 snapshot=($(ec2-create-snapshot ${vols[i]} --region $region))
 xfs_freeze -u ${mountpoints[i]}

 # now add an item to the SimpleDB domain
 # containing the snapshot id and its expiration
 /usr/local/bin/simpledb put snapshot ${snapshot[1]} expires="${expiration}"
done

Notice that we make sure the mountpoints are read-only when taking the snapshot.
This is especially for databases, as they might come to a grinding halt when their binary
files and logfiles are inconsistent. The vols and mountpoints variables are arrays. You
can give any number of volumes, as long as the corresponding mountpoints are given.

48 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

The script will continue regardless, but snapshots are taken without the mountpoint
frozen in time. You will need to create a domain in SimpleDB called snapshot, where
we add an item.

To illustrate how easy it is to create our backup scheme, this is the cron, which schedules
a process to delete expired backups daily and to make backups every three hours, daily,
weekly, and monthly:

m h dom mon dow command
@daily /root/ec2-elastic-backups/ec2-elastic-expire > /dev/null 2>&1

0 */3 * * * /root/ec2-elastic-backups/ec2-elastic-backup "24 hours" > /dev/null 2>&1
@daily /root/ec2-elastic-backups/ec2-elastic-backup "7 days" > /dev/null 2>&1
@weekly /root/ec2-elastic-backups/ec2-elastic-backup "1 month" > /dev/null 2>&1
@monthly /root/ec2-elastic-backups/ec2-elastic-backup "1 year" > /dev/null 2>&1

And here is the script that deletes the expired snapshots:

#!/bin/bash
#
install http://code.google.com/p/amazon-simpledb-cli/
and http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1136
WARNING: make sure to install the required packages of the second as well

export EC2_KEY_DIR=/root/.ec2
export EC2_PRIVATE_KEY=${EC2_KEY_DIR}/pk-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem
export EC2_CERT=${EC2_KEY_DIR}/cert-4P54TBID4E42U5ZMMCIZWBVYXXN6U6J3.pem
export EC2_ACCESS_KEY='AKIAIGKECZXA7AEIJLMQ'
export AWS_ACCESS_KEY_ID='AKIAIGKECZXA7AEIJLMQ'
export EC2_SECRET_KEY='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'
export AWS_SECRET_ACCESS_KEY='w2Y3dx82vcY1YSKbJY51GmfFQn3705ftW4uSBrHn'
export EC2_USER_ID='457964863276'
export EC2_HOME='/root/ec2-api-tools-1.3-53907'
export JAVA_HOME='/usr'
PATH=$PATH:$HOME/bin:$EC2_HOME/bin:/usr/local/bin

region="us-east-1"

now=$(date +"%Y-%m-%d %H:%M:%S")

snapshots=$(simpledb select "select * from snapshot where expires < '${now}'")

for snapshot in $snapshots
do
 snap=`expr match "$snapshot" '.*\(snap-........\).*'`
 if [-n "$snap"]; then
 # remove the item from SimpleDB
 simpledb delete snapshot $snap
 # delete the snapshot itself
 ec2-delete-snapshot $snap --region $region
 fi
done

This is all it takes to create a backup strategy that creates point-in-time snapshots at a
three-hour interval, keeping all of them for at least 24 hours, and some up to a year.

Making Backups of Volumes | 49

Taking a snapshot of a reasonably-sized volume takes seconds. Compare that to rsync-
based backups; even when run incrementally, rsync can take quite some time to com-
plete. Restoration of individual files is a bit more problematic; it must first create a
volume from the snapshot and then look for the specific file. But it is a fail-safe, not
fool-safe, measure.

At this point, it is probably a good idea to stop all the EC2 and RDS
instances you were using for practice, to keep your credit card safe.

In Short
Well, in this chapter, we did quite a bit of work!

We set up an AWS account with EC2, installed the necessary command-line tools, and
started using the AWS Console. We introduced the concept of regions and availability
zones. And we finally got our hands dirty launching an instance based on an Ubuntu
image. For that, we created a key pair, which grants you access to the instance so you
can start using it. We introduced the concept of security group to specify who is allowed
to connect to an instance and with which protocols.

The next thing we needed was a volume for the web application content, resembling a
disk. We attached one to our instance. To assign a static IP address to our instance, we
used an EIP. After setting all this up, we created a custom image with all our changes,
including scripts for associating the EIP, attaching the volume and mounting it at boot,
and cleaning up when shutting down the instance.

The next big thing we looked at was RDS, the MySQL database service of AWS. We
discussed the advantages of it, including backups, automatic software upgrades, almost
immediate scaling, and high availability. We launched a DB instance and set up the
allowed machines with the DB security groups.

For giving global fast access to static content, we used CloudFront, the content distri-
bution network of AWS. Uploading your assets in an S3 bucket and pointing Cloud-
Front to it, we made our files accessible all over the world.

Finally, we looked at an easy way to create backups of your volumes.

We now basically have an instance running with a web server and application on it,
using a database and distributing static content efficiently all over the world. And we
do proper backups of everything, including volumes.

If your application becomes more popular, with more users and load, you can take
advantage of many of AWS’ capabilities. That’s what we are going to start looking at
in the next chapters.

50 | Chapter 2: Starting with EC2, RDS, and S3/CloudFront

You can find this at oreilly.com

in print or ebook format.

It’s also available at your favorite book retailer,

including iTunes, the Android Market, Amazon,

and Barnes & Noble.

oreilly.comSpreading the knowledge of innovators

Want to read more?

book

http://bit.ly/oreillyapps
http://www.android.com/market/
http://amazon.com
http://www.barnesandnoble.com/
http://oreilly.com
http://oreilly.com
http://oreilly.com/catalog/0636920013228/

