COMP 110
Introduction to Programming

Fall 2015
Time: TR 9:30 – 10:45
Room: AR 121 (Hanes Art Center)

Jay Aikat
FB 314, aikat@cs.unc.edu

Previous Class

• What did we discuss?
Today

• Announcements
 • Lab 1 will be announced later today
 • Lab1: due Tue, Sep 8 at 11:55 PM

• More on variables and operators
• Binary representation
• Keyboard input

More Operators – Increment and Decrement

• Increment (++)
 – adds 1 to any integer or floating point
 count++;
 count = count + 1;

• Decrement (--)
 – subtracts 1 from any integer or floating point
 count--;
 count = count - 1;
Increment and Decrement

- **Prefix** \((++\text{count} \text{ or } --\text{count})\)
 - value used in a larger expression is the new value of \text{count} (after the increment/decrement)

- **Postfix** \((\text{count}++ \text{ or } \text{count}--)\)
 - value used in a larger expression is the original value of \text{count} (before the increment/decrement)
 - increment/decrement is the last operation performed (even after assignment)

If \text{count} currently contains 45, then the statement

\[
\text{total} = \text{count}++; \\
\text{total} = \text{count} += 1;
\]

assigns 45 to \text{total} and 46 to \text{count}

If \text{count} currently contains 45, then the statement

\[
\text{total} = ++\text{count}; \\
\text{total} = \text{count} += 1;
\]

assigns the value 46 to both \text{total} and \text{count}
Questions

• What is stored in total and count in the following statements?

```java
double total = 15.5;
total++;
total = total + count++;
int total = 20, count = 3;
total = total / --count;
```

<table>
<thead>
<tr>
<th>total</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

Input and Output

• Normally, a computer receives two kinds of input:
 – The program
 – The data needed by the program.

• The output is the result(s) produced by following the instructions in the program.
Running a Program

- Sometimes the computer and the program are considered to be one unit.
 - Programmers typically find this view to be more convenient.

It’s all About Data

- Software is data
 - numbers, characters
 - instructions, programs

- Hardware stores and processes data
 - read, write
 - add, subtract, multiply, divide
Representing Text Digitally

- All information in a computer is *digitized*, broken down and represented as numbers.

 Hi, Heather.

 72 105 44 32 72 101 97 116 104 101 114 46

Corresponding upper and lower case letters are separate characters.

Language of a Computer

- **Machine language**: the most basic language of a computer

 - A sequence of 0s and 1s
 - binary digit, or *bit*
 - sequence of 8 bits is called a *byte*

 - Every computer directly understands its own machine language
 - why can't Windows programs run on Apple computers?
Bit Permutations

<table>
<thead>
<tr>
<th>1 bit</th>
<th>2 bits</th>
<th>3 bits</th>
<th>4 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>001</td>
<td>0001</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>010</td>
<td>0100</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>011</td>
<td>0110</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0100</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>0101</td>
<td>1101</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>0110</td>
<td>1110</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>0111</td>
<td>1111</td>
</tr>
</tbody>
</table>

Each additional bit doubles the number of possible permutations

Bit Permutations

- Each permutation can represent a particular item
- There are 2^N permutations of N bits
 - N bits are needed to represent 2^N unique items

How many items can be represented by

- 1 bit? $2^1 = 2$ items
- 2 bits? $2^2 = 4$ items
- 3 bits? $2^3 = 8$ items
- 4 bits? $2^4 = 16$ items
- 5 bits? $2^5 = 32$ items
Binary Numbers

- N bits to represent 2^N values
- N bits represent values 0 to 2^N-1
- Example: 5 bits
 - 32 unique values (0-31)
 - 00000 = 0
 - 11111 = 31

\[
\begin{align*}
2^4 & \quad 2^3 & \quad 2^2 & \quad 2^1 & \quad 2^0 \\
16 & + & 8 & + & 4 & + & 2 & + & 1 \\
\end{align*}
\]

Decimal to Binary

<table>
<thead>
<tr>
<th>Number</th>
<th>Place Value</th>
<th>Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>$2^6 = 64$</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>$2^5 = 32$</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>$2^4 = 16$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$2^3 = 8$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$2^2 = 4$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$2^1 = 2$</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>$2^0 = 1$</td>
<td>0</td>
</tr>
</tbody>
</table>
Questions: Binary Numbers

• What’s the maximum value a 6-bit number can represent? **63**

• What’s the decimal representation of 111010? **58 = 32+16+8+2**

• What’s the binary representation of 35? **100011**

Teaching Assistants and Office hours

http://comp110.com/team

http://comp110.com/support
Keyboard Input

- Java has reasonable facilities for handling keyboard input.
- These facilities are provided by the `Scanner` class in the `java.util` package.
 - A `package` is a library of classes.

Simple Input

- Data can be entered from the keyboard using
  ```java
  Scanner keyboard = new Scanner(System.in);
  ```
 followed, for example, by
  ```java
  eggsPerBasket = keyboard.nextInt();
  ```
 which reads one `int` value from the keyboard and assigns it to `eggsPerBasket`.
Simple Screen Output

```
System.out.println("The count is " + count);
```

- Outputs the string literal "the count is
- Followed by the current value of the variable count.

Using the Scanner Class

- Near the beginning of your program, insert
  ```java
  import java.util.Scanner;
  ```
- Create an object of the Scanner class
  ```java
  Scanner keyboard =
      new Scanner (System.in)
  ```
- Read data (an int or a double, for example)
  ```java
  int n1 = keyboard.nextInt();
  double d1 = keyboard.nextDouble();
  ```
Next class (Tue, Sep 1)

- Binary representation
- More programming in class

→ Reading Assignment: Chapter 1