The Challenge
Determining information about the relative positions of two virtual objects is a fundamental problem in computer animation, computer graphics, physically based modeling, and robotics. Algorithms have been proposed to solve certain aspects of the problem, such as intersection detection and distance computation. Existing algorithms are also sometimes restricted to certain classes of models, such as convex polyhedra. It is desirable to have a framework that allows any sequence of proximity queries to be performed efficiently for a useful class of models.

Highlights
- Use of convexity and hierarchical refinement to accelerate proximity queries between two general polyhedral models.
- A unified framework for proximity queries including intersection detection, tolerance verification, approximate and exact minimum distance computation, and contact determination.
- A suite of query acceleration techniques that exploit temporal and spatial coherence: piece caching, priority directed search, and generalized front tracking.

The Approach
SWIFT is an exact collision-detection library for environments composed of general polyhedral solids undergoing rigid motion. It handles multiple types of queries such as intersection detection, distance computation, and contact determination, in a unified framework. The algorithm proceeds in three stages. The first two involve pre-computation.

First, an input polyhedron is decomposed into convex surface patches. This is done by using a breadth-first search on the dual graph of the polyhedra while maintaining a convex hull using the insertion hull algorithm. The convex hull of the convex surface elements is then taken to construct convex pieces. The second stage groups these pieces hierarchically using convex hull bounding volumes. The primitives, as well as the bounding volumes, are convex polyhedra.
Combining all these ideas into a single framework yields a powerful proximity system.

The source code that is available for SWIFT can handle compositions of convex polyhedra. It includes an implementation of sweep-and-prune to quickly find the pairs that need further testing.

**Project Leaders**
Ming C. Lin, associate professor

**Graduate Research Assistants**
Stephen Ehmann

**Research Sponsors**
National Science Foundation
Office of Naval Research
U.S. Army Research Office

**Selected Publications**


**Key Words**
Collision detection; tolerance verification; distance computation; contact determination; dynamic simulation; hierarchical data structures.

---

**For More Information**
Dr. Ming C. Lin
Department of Computer Science
University of North Carolina at Chapel Hill
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175
Phone: (919) 962-1974
Fax: (919) 962-1799
E-mail: lin@cs.unc.edu
Web: gamma.cs.unc.edu/SWIFT++
gamma.cs.unc.edu/SWIFT
gamma.cs.unc.edu/collide

A frame from a dynamic simulation of a spoon falling into a cup.