Subareas: Planning and Algorithms, Medical Robotics, Manipulation, Kinematics and Dynamics, Human-Robot Interaction, Robot Perception (also see Computer Vision)

Robotics is increasingly affecting our daily lives and impacting healthcare, transportation, defense, manufacturing, and entertainment. New robots and algorithms are enabling physicians to perform more precise surgical procedures, assisting individuals with tasks of daily living, enabling autonomous agents to maneuver through crowded environments, and manipulating materials at the micro and nano scales.

At UNC, we are creating new algorithms to address fundamental computational challenges in robotics, including motion planning in complex environments, efficiently modeling robot kinematics and dynamics, and providing new interfaces for human-robot interaction. We bring a broad range of expertise to these problems, including geometric computing, probabilistic methods, physically-based simulation, many-core CPU and GPU parallelization, machine learning, computational haptics, and computer vision. We apply the new algorithms and methods we develop to a variety of applications involving both physical robots as well as virtual agents. Current applications include robot-assisted medical procedures, surgery training, design prototyping, intelligent transportation systems, nano-scale manipulation, computer animation, multi-robot/agent interactions, and personal assistant robots.