Mapping Fetal Brain Development In Utero Using Magnetic Resonance Imaging: The Big Bang of Brain Mapping

Colin Studholme

Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, Washington 98195; email: colin.studholme@ieee.org, http://depts.washington.edu/bicg

Keywords
motion correction, image mosaic, deformation morphometry, spatiotemporal atlas, tissue segmentation, cortical folding

Abstract
The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.
1. INTRODUCTION

The combination of magnetic resonance imaging (MRI) physics with mathematical and computational techniques that underpin modern brain image analysis has created a range of new tools for the neuroscientist and clinician. These allow the creation of maps quantifying both brain structure and function across human populations, and the examination of how clinical factors can influence the patterns of measurements. These developments have helped form the basis for the emergence of brain mapping (1–3) as a key research topic in both basic neuroscience and clinically focused brain research. In particular, computational morphometric methods have provided new insights into how brain structure changes over time and how this process is influenced by factors such as dementia (4–6), psychiatric conditions (7), brain injury in substance abuse (8), and changes in the brain due to infectious disease (9). More recently, focus has shifted to the study of the developing brain (10–13), and large-scale projects are under way to understand and map the process of brain growth from birth to adult (14). These studies have focused on postnatal mapping of growth. However, recent developments in clinical MRI, as illustrated in Figure 1, have raised the possibility of pushing these studies back further to image the process of human brain growth in utero. For the neuroscientist, the ability to image earlier, simpler structural configurations provides insights into the fully developed anatomy. By mapping the brain in its early form, prior to the process of anatomical individualization, and capturing its transformation into the individualized adult configuration, we hope to understand better how the adult brain is organized and how
it functions. This article reviews the combination of engineering and clinical developments that are beginning to provide high-quality and reproducible 3D images of early human brain growth, and it examines some of the computational and algorithmic challenges in analyzing and modeling dynamically changing fetal neuroanatomy.

2. BACKGROUND: THE EMERGENCE OF CLINICAL FETAL MRI

2.1. Fetal MRI Safety

A key factor in the development of brain mapping has been the availability of reproducible, high-quality MRI, which enables 3D and 4D mapping of quantitative structural and functional measurement within the living brain. Unlike X-ray computed tomography or nuclear medicine imaging used in adult brain studies and explored experimentally for human fetal imaging (15), MRI does not involve ionizing radiation. However, it remained out of the toolbox of the clinical radiologist because of safety concerns for the developing fetus. A significant amount of literature examines the possibility of MRI-induced damage from radio frequency field (RF) and electromagnetic field (EMF) exposure (16), in terms of both static and changing fields (17). This early work was refined (18–20) through the use of more accurate anatomical models (21, 22) for adult imaging. When clinical MRI during pregnancy was being considered, this work was extended with fetal-specific RF-EMF models (16, 23–26). Previous studies examined concerns regarding thermal effects arising from the lack of surface cooling available to the fetus (27) and the effects of noise levels (28) resulting from the use of faster (and noisier) MRI sequences. The potential for MRI-induced genetic mutations (29) and the consequences of maternal stress related to the MRI exam also have been examined (30). This work has been complemented by experimental investigations using animal models (31) to look at longer-term effects of exposure to fields (32) and to examine the thermal effects (33) on the fetus. Follow-up studies of children with fetal MRI also have been carried out (34–36), and no significant longer-term adverse effects have been discovered. As a result, fetal MRI has begun to be accepted more widely as a tool for clinical diagnosis.
2.2. Early Fetal MRI

The use of MRI with pregnant patients has been driven by the clinical radiologist and perinatologist, who look for better ways to analyze fetal health. However, from the beginning, motion was the key challenge. The first clinically driven studies included early T1-weighted (T1W) lower magnetic field imaging (37, 38) and T2-weighted (T2W) imaging (39–44). These early attempts used slower techniques that were highly susceptible to motion of the fetus and were therefore largely dependent on the luck of the radiographic technician in catching the fetus while not in motion, and often were performed with shallow maternal breathing. In France, fetal motion was reduced by injection of a sedative into the umbilical vein (45) or via maternal sedation that crossed the placenta (46). Such fetal sedation was not practical for more general screening, although it remains feasible for life-threatening disorders. As a result of the general lack of reproducibility of methods, these promising early approaches were of limited use for general clinical practice.

The development of faster imaging techniques, combined with improved imaging hardware, was the key to making MRI more generally applicable in clinical fetal studies (47–49). These include echo planar imaging (EPI) developed in the 1970s (50), which also was used in early fetal studies (51, 52), providing a so-called snapshot image of the anatomy. Critically, this early work showed that a single slice could be acquired quickly enough to exclude most fetal motion and still produce an acceptable level of signal to noise to delineate anatomical detail. It also, however, illustrated that averaging of slices to increase signal without consideration for motion was still not possible due to between-slice fetal movements.

2.3. Approaches to Faster and 3D MRI

An MRI data acquisition samples the spatial-frequency spectrum of the underlying anatomical measurements (k-space), and a spatial image is reconstructed using a Fourier transform (53). A single magnetic resonance (MR) signal recording typically samples one line of this k-space over a few milliseconds, and it can be acquired in such a way as to collect 2D slices or full 3D volumes by encoding space using different temporally varying patterns of RF and magnetic field gradients (54). Full 3D volume imaging is typically employed in studies of adults and cooperative children and adolescents, as imaging time is still on the order of minutes. Motion during this time can induce ghosting or blurring as signal phase or frequency is corrupted. As a result, multislice 2D imaging is generally acquired in studies where motion is expected to be a problem. These allow pseudo-3D studies of the brain for fetal diagnosis (55) for fetuses exhibiting limited motion. However, motion still can induce artifacts when it occurs between data acquisition and the following RF excitation or when it induces spin phase errors as the object moves through the magnetic field between excitation and the following data sampling acquisition. So-called motion robust sequences also have been developed; these include projection-reconstruction (56) and spiral (57, 58) MRI sequences. However, they have so far been unable to provide clinically useful images in a short enough time interval for 3D fetal imaging.

2.4. Motion Correction Techniques in MRI

Even with the many advances in MRI, full 3D acquisitions that are fast enough to reduce the chance and impact of motion artifacts to an acceptable level are still not feasible. In adult imaging, a range of motion correction schemes has been developed to allow imaging in the presence of motion. Prospective motion correction techniques make use of independent estimates of anatomical positioning to update the acquisition process as it proceeds, by modifying the phase or frequency
encoding used to define the scan geometry (59), or to exclude corrupted components of the signal acquired at known times of motion. A range of such techniques has been explored using optical-based (60, 61) or MRI marker–based (62) tracking of patient anatomy. However, the requirement for some form of attached marker or visible surface precludes these approaches from use in fetal imaging.

Motion estimates can also be derived from additional MRI measurements using so-called navigator echos (63), which are rapid, simplified signal acquisitions interspersed within MR sequences. These have been used for both retrospective (63) and prospective (64) correction of motion and can employ a variety of k-space trajectory shapes to measure motion in different axes, including linear (65), circular (66), and spherical (67), for full 3D motion tracking (68, 69). To correct larger head motion in children, recent methods (70) have combined spiral navigator echos with Kalman filtering–based tracking. In fetal MRI, navigator echos have been used to detect and trigger fast snapshot slice imaging (71) at times when the fetus is stationary along a selected axis. However, these can be difficult to localize for estimation of full 3D motion in fetal MRI. An alternative approach, derived from radar imaging, is to retrospectively “refocus” the data in the k-space (Fourier) domain without separate motion estimates (72). However, because these algorithms operate on the k-space (Fourier) domain, it is difficult to adapt them to correct locally rigid motion, as required in 3D fetal imaging.

2.5. Current Multislice Imaging and Its Limitations

In place of earlier EPI methods, accelerated sequences such as fast spin echo (FSE) (73), half-Fourier acquisition single-shot turbo spin echo (HASTE) (74), and single-shot fast spin echo (SSFSE) (75) have been developed to provide improved tissue contrast. These require a second or less for one slice, and they provide the clinician with a reliable route to getting selected slice views through unsedated fetal anatomy, albeit without accurately known 3D spatial relationships between consecutive slices. Studies typically involve the acquisition of multiple stacks of slices planned with different orthogonal orientations to provide complementary views of the anatomy. These can make use of real-time planning to adjust to fetal motion manually (75) or gating to remove the influence of maternal breathing.

Clinical applications of faster multislice imaging rapidly expanded, particularly for neuroimaging (76), where ultrasound studies are limited by reverberations resulting from the bony structure of the fetal skull. Here, MRI can provide valuable contrast between the developing fetal brain’s different tissue layers that are invisible to ultrasound, such as the germinal matrix and subplate, as well as provide high-resolution information about the folding of the cortical plate. MRI has found a key role in providing valuable complementary information in specific clinical conditions, particularly involving brain development (77). It has been shown to be extremely useful in evaluating causes of ventriculomegaly (78, 79), identifying cerebral malformations (80, 81), identifying infections (82), and identifying other fetal brain injuries (83, 84). In addition to radiographic diagnosis, fetal brain MRI has begun to be used in quantitative studies of brain growth in different clinical populations (79, 85–88).

For more quantitative studies of brain anatomy, these types of imaging acquisition suffer from some important limitations. In addition to the problem of the unknown anatomical relationships between successive slices, they also employ relatively thick slices to provide adequate in-plane resolution and signal to noise for radiological inspection, but in doing so they hinder true 3D analysis. Furthermore, gating to remove the influence of maternal breathing, although reducing the chance of within-slice motion, can also significantly extend the scan time, with little improvement in cases of significant fetal motion.
3. A HYBRID SOLUTION TO 3D FETAL MRI: COMPUTER VISION MEETS MAGNETIC RESONANCE PHYSICS

The current direction of research toward full 3D MRI of moving fetal anatomy has taken a hybrid approach of combining MR physics with computer vision techniques. This was motivated by the observation that clinical studies of the fetal brain commonly make use of multiple stacks of multislice acquisitions in different axes. These stacks are often repeated because of fetal motion during a stack.

In computer vision, the field of image mosaicing (89) seeks to merge subimages into a single image. This merge can provide either an enlarged field of view (90) by increasing the spatial extent of the data, or an improved resolution (91) by increasing the spatial-frequency extent of the data. Mosaicing can be divided into the steps of transformation estimation and image fusion. It has been employed in MRI using a context similar to that of many computer vision applications (92) to extend the field of view of an image, and in confocal microscopy, an elegant Lie group framework has been proposed for collective transformation estimation (93). In the context of fetal MRI, we need to combine regions of images that contain a moving object (94) surrounded by confounding moving structure. As illustrated in Figure 2, given a set of \(N \) 2D slice images \(L_n(x_n), n \in \{1 \ldots N\} \), in order to make use of the partial data provided by each slice, we need to estimate the full rigid 3D transformation \(y = T_d(x) \). This transformation maps from points \(x_n \) in the brain in each 2D slice to a consistent 3D anatomical coordinate frame \(y \), in which a true 3D image \(V(y) \) is to be formed. Conventional 2D-to-2D photographic mosaicing approaches can explicitly consider shared structure in overlapping images to refine alignment. However, here we have a 2D-to-3D matching problem involving the collective alignment of slices within a volume space. Unlike previous work on slice-to-volume matching in medical imaging—where individual slices from an interventional MRI study (95), postmortem study (96), anatomical atlas (97), or functional MRI study (98) are matched to a full 3D volume acquired separately—here we do not have a reference 3D volume.

3.1. Reconstruction-Based Slice Motion Estimation

The first practical approach to 3D fetal brain imaging (99, 100) proposed a two-step process by combining ideas from slice-to-volume matching and image mosaicing. The iterative approach...
involves the formation of a putative 3D volume image from the scattered slice data using a working estimate of individual slice transformations. Slice alignment to this volume is then refined and used to form an improved 3D volume for the following iteration. A 3D image can be formed from slice images and a given set of slice transformations, using adaptations of conventional scattered-data interpolation schemes (101–103) to resample values from sets of arbitrarily oriented slices onto a regular voxel lattice. Refinement of alignment is achieved by defining an image similarity measure $S(I_n, V_i)$ between the slice image intensities $I_n(x)$ and the reconstructed volume image intensities $V_i(y)$ at iteration i. A gradient ascent scheme is used to maximize $S(I_n, V_i)$ with respect to $T_n(x)$ for each slice.

The problem of estimating full rigid transformations (three rotations and three translations) for each individual slice is highly underdetermined and requires constraints to provide a tractable route to a solution. Image-matching schemes often make use of a hierarchical multiresolution approach to avoid local optima, by first estimating coarse misalignment from lower-resolution images. In a similar way, methods to estimate slice alignment can estimate bulk motion of all slices first, and then refine the estimate to smaller and smaller groups of slices (100) to recover fine-scale structure in the motion trajectory. However, the slice acquisitions within a multislice fetal MRI study are commonly interleaved to avoid slice-to-slice crosstalk by acquiring all oddly and then all evenly spatially indexed slices. Thus, hierarchical estimation of fetal trajectory from the slice stack also must account for temporal ordering of the slice acquisitions.

This two-step reconstruction and motion estimation scheme essentially acts to sharpen the next reconstructed 3D volume, as slice alignment with the current volume is refined to remove inconsistent contributions from slices that can be explained by their spatial transformation parameters. This process can be related to the retrospective k-space focusing methods of Reference 72, but acting entirely within the spatial domain to allow localization of the motion correction to the anatomy of interest (here the fetal head).

This iterative reconstruction-based approach, making use of an intermediate volume, was emulated by later methods (104, 105) using different approaches to volume reconstruction. In a study by Jiang et al. (104), by implicitly assuming that pure through-plane motions are unlikely to occur, the data acquisition requirement was simplified to a single-axis orientation repeated over time.

3.2. Intersection-Based Slice Motion Estimation

The reconstruction-based motion estimation approaches make use of an iterative scheme alternating between reconstructing a 3D image and matching slices to that image. Although this has been found to be effective experimentally for many cases, it suffers from a lack of proven convergence properties. Problems can occur when slice sample density falls during slice motion estimation, inducing local blurring in the putative volume reconstruction, which then impacts the resulting slice alignment step. A more recent approach avoids these issues by removing the need for a volume reconstruction step (106, 107) for motion estimation. This approach, in effect, extends 2D image mosaicing to the extreme case of considering overlap at the intersection of any pairs of slices that have been acquired in approximately orthogonal orientations. As illustrated in Figure 3, for a single pair of intersecting slices, the image structure along this intersection must match when they are mapped consistently into the 3D space. This match provides partial geometric constraints on the relative location of the two slices (for example, limiting the sliding along an intersection but still allowing rotation as a hinge around the intersection). By considering all intersecting slice pairs, as illustrated in Figure 3, we can seek slice transformations that collectively resolve all relative mismatches in the acquired data. Using a sum of squared difference in image intensity
Figure 3

Intersection-based slice motion estimation. An illustration of the least-squares framework used to iteratively co-align sets of intersecting slice stacks corrupted by between-slice motion. Abbreviations: A, axial; C, coronal; S, sagittal.

a Slice locations in 3D: Rigid transformation \(T_j \) mapping to 3D anatomy from 2D pixels \(x \) in each acquired slice parameterized by values \(\theta = (\theta_1, \ldots, \theta_6) \) specifying the 3 translations and 3 rotations.

b Slice pair intersection: 3D location of distance \(\lambda \) along line of intersection \(a_i(\lambda; \theta_i, \theta_j) \).

c Slice mismatch: Intensity \(I_i \) of slice \(i \) in terms of distance \(\lambda \) along line of intersection is then:

\[
I_j(T^{-1}_j(a_i(\lambda; \theta_i, \theta_j); \theta_j))
\]

which forms a vector of intensity values:

\[
I(\theta_i, \theta_j) = \left[I_i(T^{-1}_i(a_i(\lambda_1; \theta_i, \theta_j); \theta_i)), \ldots, I_i(T^{-1}_i(a_i(\lambda_N; \theta_i, \theta_j); \theta_i)) \right]
\]

at points \(\lambda_p \) for \(p = 1 \ldots N \) locations along the intersection.

d Collective misalignment energy: Intensity differences

\[
d_{ij}(\theta_i, \theta_j) = I(\theta_i, \theta_j) - I(\theta_i, \theta_j)
\]

squared and summed for all intersections between each slice \(i \) and all slices \(S_j \) intersecting with it

\[
E = \Sigma_i \Sigma_j ||d_{ij}(\theta_i, \theta_j)||^2
\]

should then be minimized to bring slices into collective alignment.

e Interrelated slice positioning: Covariance of all slice transformation parameters \(\Theta = (\theta_1, \ldots, \theta_i)' \) is

\[
\Theta_{k+1} = \Theta_k - \left[2(\nabla_{\Theta} D) \nabla_{\Theta} E^{-1} \right] \nabla_{\Theta} E
\]

where \(D = [d_{ij}(\theta_i, \theta_j), d_{ij}(\theta_i, \theta_j), \ldots] \) is a vector of all intersection differences at iteration \(k \) and \(\nabla_{\Theta} \) is the gradient with respect to each of the slice transformation parameters \(\Theta \).
as a matching criterion for the MR slices, it is possible to formulate the collective alignment in
a least-squares framework that is accessible to efficient optimization. This has the computational
advantage of not requiring a volume 3D reconstruction at each step and potentially provides
improved accuracy owing to avoidance of the blurring that can occur in the 3D reconstruction
process. It is interesting to relate the slice intersection approach to that of using an additional
linear navigator echo to acquire motion information. Each intersection of a slice pair provides an
equivalent 1D source of information about the object motion.

3.3. Anatomical Localization of Motion Estimation
In addition to the rigidly moving fetal head, fetal MRI slices generally include a large fraction of
maternal anatomy and fluid deforming or flowing around the fetal head that must be excluded
from the motion estimation process. This exclusion can be achieved by approximate cropping of
the data (100) around the fetal head, combined by the use of a robust image-matching criterion.
Later work (104) used a careful manual delineation of the fetal brain in each acquired slice to
achieve local matching. More recently automated methods (107) have incorporated an explicit
spatial windowing in the motion estimation process; this windowing is aligned with the data
during motion estimation.

3.4. Improving Volume Reconstruction
In the first approaches (100) to combining motion-scattered multislice fetal brain slices, a
Gaussian-weighted interpolation was used to regrid the scattered slice data onto a regular voxel
lattice. This was motivated by the known slice profile and was robust to missing regions of data.
Later work (104) used an alternative B-spline scattered interpolation to provide a sharper rendition
of structures from the combined slice data when many slice stacks were available. In a study by
Kim et al. (107), the general approach of kernel-based interpolation was further refined using an
edge-weighted interpolation scheme. This acts to enhance the contributions of structure acquired
in different slice orientations. In new work (105, 108, 109), the scattered-data interpolation was
extended further to incorporate concepts from superresolution image reconstruction to enhance
the fidelity of the reconstructed image where the anatomy is significantly oversampled by many
repeated acquisitions.

A second aspect of the volume reconstruction problem is that of changing MRI intensity
inhomogeneity or bias across the field of view (110). This is particularly a problem in abdominal
imaging, where the anatomy of interest can be far from the phased array surface coils used in image
formation. In fetal imaging, when the fetus moves with respect to the coils, the in-slice intensity
distortions can change when the same anatomical region is imaged at different times during a
study. When these slices are combined to form a single volume, these differences induce artifactual
structures that can obscure subtle underlying tissue boundaries present in the fetal anatomy such as
the subplate (111), making them difficult to quantify. Rather than apply correction methods (112)
directly to the final volume, we must consider the individual relative slice distortions contributing
to volume reconstruction errors. To address this, a relative slice bias correction scheme was
incorporated into the final reconstruction (100). This early approach assumed that one 3D stack
contained limited fetal motion and could therefore be used as a reference for relative intensity
correction of all remaining slices. This idea has been developed further using a slice intersection
framework to provide a direct relative bias estimation for each slice. Here, all individual slice bias
fields are brought into agreement on the basis of discrepancies along all slice pair intersections
(113), removing the need to assume that a minimal motion reference stack is present in the study.
Figure 4

(a) Example motion estimation (107), relative intensity bias correction (113), and reconstruction into a single 3D volume (orthogonal slices in left column) of individual sagittal, axial, and coronal slice stacks (right three columns) acquired from a clinical fetal brain study using fast multislice imaging. (The original slices are shown in acquired coordinates before motion estimation and therefore are not precisely aligned.) These illustrate the valuable increase (left column) in the isotropic resolution and contrast to noise resulting from the accurate fusion of multiple fast multislice imaging studies of the moving fetus. (b) Motion correction and fusion of MRI scans of a younger fetal brain with extreme motion: reconstructed with individual slice motion estimation (left) and without (center), together with one of the original slice stacks (right).

3.5. Advantages of Retrospectively Combining Clinical Images

An example of the ability of retrospective multislice motion correction techniques to recover extreme motion in a study of a younger fetal brain is shown in Figure 4b. Critically, this step allows the clinician and neuroscientist to study normal fetal anatomy without biasing studies toward those without motion artifact or those who undergo sedation. The process of combining multiple clinical studies into a single coordinate system provides two key advantages in addition to 3D image formation, as illustrated by Figure 4a. First, it allows signal averaging across multiple data acquisitions through the same anatomy, to improve contrast to noise and help delineation of subtle tissue boundaries such as those of the subplate (111). In addition, the original clinical slice data suffer from highly anisotropic resolution (i.e., fine in-plane resolution, but considerably greater slice thickness). This induces partial volume artifacts and poses considerable challenges when attempts are made to visualize and quantify cortical folding. By combining complementary structure delineated in slices with high in-plane resolution but different orientation, improved isotropic resolution is possible (107). The need to replan a scan or manually “chase” a fetal head during a typical clinical study to ensure slices are in a specific orientation for radiological inspection is reduced by the creation of a true 3D volume image, which can be reformatted in any slice.
orientation. This can significantly reduce the study time for the mother and fetus. Second, through the use of retrospective correction of scans, the clinical 2D slices are still available for radiological inspection where needed.

4. QUANTIFYING AND MAPPING BRAIN GROWTH IN UTERO

4.1. Automated Fetal MRI Brain Tissue Segmentation

The first step in quantifying human brain anatomy from MRI scans is often to take the MRI scan and assign to the voxels (or pixels) labels indicating the most likely type of tissue at that location. Such MRI segmentation techniques, developed initially to partition the adult human brain into tissue classes automatically, have been developed extensively over the past 20 years (114). However, the challenges posed by the study of developing fetal brain anatomy have necessitated new directions in brain image segmentation methods. Many of the most accurate and robust approaches to adult brain tissue segmentation make use of parametric statistical models of the image contrast and noise (115, 116). These can employ Gaussian mixture models (117), which capture the piecewise uniform nature of the tissue regions in the brain. The most widely used approaches also use atlas-based spatial priors on the probability of tissues over the brain to initialize and constrain a labeling of new MRI scans (118, 119) and to provide spatial context to the labeling. These prior maps are estimated in a common canonical coordinate frame (120) and deformed into the space of a new unlabeled MRI scan using a nonrigid, deformable image registration. Labeling is then adapted to the new brain MRI scan by combining the prior with a likelihood for the data conditioned on the labels and applying maximum a posteriori or maximum likelihood methods (121, 122).

In the most commonly used T1W MRI of the adult and child, visible tissue classes commonly consist of gray matter, white matter, and cerebrospinal fluid. However, in fetal brain imaging, T2W MRI is typically used. At the time of initial clinical MRI (approximately 20–25 weeks), the fetal brain in utero consists of a layered structure of up to seven different tissue zones (123), some of which are visible in clinical imaging at different stages of development. These zones, illustrated in Figure 5, include the germinal matrix, the cortical plate (which will become cortical gray matter), and the subplate and intermediate zone. Early work on automated fetal tissue segmentation explored approaches that extended atlases to contain priors on these developing tissues at a given developmental stage (124). These atlases were built from carefully, manually delineated MRI scans to provide an accurate statistical reference for a given age of development.

The use of subject- or age-specific templates, in children (125, 126), neonates (127–129), and even in adults (130), has been shown to improve the tissue labeling process significantly. However, unlike clinical studies of adults or children, studies of fetuses cannot be conducted easily at a precise developmental stage. This is because the speed of changes in the developing brain occur on the order of weeks or days and because the age of a fetus is relatively uncertain (131). Thus, the focus of research has been to develop continuous or computational atlases of the fetus, capable of modeling any given age. This type of atlas parametrically models changes in shape, size, MRI contrast, and tissue probability at every point in the fetal brain (132), as illustrated in Figure 5. This modeling enables the synthesis, for any given gestational age, of a specialized MRI template with representative tissue contrast and tissue probabilities. Given the difficulty and ethical considerations of carrying out repeat imaging on the same expectant mother, this atlas cannot be constructed directly from repeated longitudinal imaging as in adult analysis (1), but is naturally constructed from many different fetuses, each scanned at different ages. This allows the atlas to form a mean growth trajectory that is representative of a population and also encodes
Figure 5
Automated atlas-based tissue segmentation of a 3D T2-weighted fetal brain MRI scan using an age-specific prior map of tissue probability, MRI contrast, and brain shape and size. Labels assigned to each voxel dividing the brain into cortical plate (CP), subplate and intermediate zone (SP + IZ), deep gray matter (DG), germinal matrix (GMAT), and ventricular cerebrospinal fluid (VENT) are adapted from the atlas prior to fitting the subject MRI scan using an iterative expectation maximization (EM) algorithm (132).

the natural variation of development together with uncertainties of estimation of fetal age (131). Further methodological research has also explored the development of fetal-specific geometric priors in segmentation, which are aimed at improving tissue labeling using the layered structure of the zones of tissues in the fetal brain. The inner and outer boundaries of the brain may be delineated most easily from clinical scans, whereas the more subtle tissue boundaries between them can then be assumed to occur in a defined order from inside (germinal matrix) to outside (cortical plate). A statistical model of the occurrence of the tissue zones at different relative depths in the brain then can be used as an additional spatial prior to further improve the segmentation by helping resolve ambiguities in the labeling process (133). Such developmentally specific geometric models may provide routes to further improving many steps in fetal brain image analysis.

4.2. Mapping Regional and Local Patterns of Tissue Volume Increase
There have been important studies of whole fetal brain tissue volume growth derived from both postmortem studies and in utero imaging. Manual segmentations of cerebral mantle tissue zones on MRI scans describe the different growth trajectories for the overall cerebral brain, germinal matrix, and ventricular volumes (79, 134–135). Additionally, manual 2D measurements of laminar thickness suggest regionally varying thickness in cortex and subplate (136). The recent use of motion correction techniques to build 3D images has provided true volumetric estimates of whole brain (137) and subplate (111) in utero. Most recently, the development of automated tissue segmentation has begun to allow larger-scale volumetric studies of tissue zones from
motion-corrected in utero imaging (137a). Whereas adult studies can examine local volume changes by parceling the brain into regions (e.g., lobes) on the basis of cortical landmarks, these landmarks are often absent or inconsistent in the smooth fetal brain, and therefore alternative and often simpler anatomical divisions must be used.

At a local level, the growth of a sulcated neonatal brain from a smooth fetal brain requires a complex series of local tissue volume changes to form an individually unique cortical folding pattern. Tensor-based morphometry (TBM) (138) uses accurate spatial normalization of brain anatomy into a common coordinate frame to study patterns of size differences in local anatomy. Statistical analysis of properties of the Jacobian map of the nonrigid deformations required to bring each anatomy into the common coordinate system allows local tissue volume to be related to age and clinical variables. Such an approach requires modification to be used in the developing brain because of the dramatic changes in tissue contrast occurring over short timescales. Direct deformable registration of fetal MRI scans can induce artifactual deformations as image warping attempts to account for inconsistent tissue contrasts when mapping from one fetal age to another. By first employing automated tissue segmentation to extract age-consistent tissue boundaries, recent work has shown that it is possible to apply TBM successfully to map patterns of the spatial variation of tissue growth rate (139). Figure 6 illustrates the use of TBM to detect the locally varying pattern of expansion of tissue (regions that grow more quickly or slowly than does the overall brain), indicating where additional cortical complexity is being added.

4.3. Quantifying and Mapping Cortical Folding

Postmortem studies have shown that the primary and secondary sulci form in a consistent spatial and temporal order during normal gestation, allowing the originally smooth fetal brain to increase cortical surface area dramatically. The timing of this has been considered an accurate marker of
brain development (140) in clinical radiological inspection of MRI slices, with perturbations to this pattern providing potential stable biomarkers for abnormal functional development. Quantitative analysis of fetal brain folding from postmortem studies has shown the promise of full 3D surface curvature analysis (141). In particular, the two invariants of maximum and minimum curvature at each point on a surface give rise to a range of shape measures such as mean and Gaussian curvature (142) and shape index (143). These provide valuable quantitative ways of tracking folding that have been used in preterm brain studies (144). The creation of surface-based representations of the human fetal cortex from motion-corrected, in utero MRI has allowed the application of these methods to the earliest stages of cortical folding. Through the use of surface tessellation and quadric modeling of surface shape, the curvature of the fetal surface can be quantified and mapped accurately, forming a population-based statistical model of the normal progression of brain surface curvature. Results show (145) that it is possible to use this approach to detect the subtle early stages of folding at the start of sulcal formation (as illustrated in Figure 7) for normally developing fetuses at different developmental ages.

5. FUTURE DIRECTIONS

5.1. Imaging Developing Tissue Microstructure: Diffusion MRI

Imaging of tissue microstructural properties and connectivity of white matter tracts has emerged as a powerful structural modality both in adult brain studies and in childhood and adolescence studies. Diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) are MRI techniques (146, 147) that provide measures of microstructural tissue integrity (148, 149). They use fast MRI acquisitions to provide directionally sensitive measures of water diffusion within tissue. Research from clinical imaging has shown that DWI is feasible in some fetal brain studies (150–152) where there is limited motion and that it can provide significant additional information in cases of suspected abnormalities (153, 154). However, studies often have been limited to a small number of slices and have limited anatomical coverage. DTI studies often involve the acquisition of larger numbers of directional measurement images to provide a more complete profile of water diffusion.
at each point in the brain, but are therefore even more sensitive to motion. In postmortem fetal imaging (155), DTI has shown great promise in studying the development of white matter tracts. Fetal DTI studies in utero, although requiring a longer imaging time, also have been successful (156) in providing insights into the formation of connections within the brain. However, much of this in utero research has been limited to studies of older fetuses or cases where the fetal head is engaged in the maternal pelvis, where fetal motion was constrained, and is therefore not yet feasible for general clinical imaging or larger-scale neuroscience studies.

Most recently, slice motion correction techniques for DTI have been proposed (157) and adapted (158, 159). Because each directional diffusion measurement is with respect to a specific coordinate frame, motion of the fetal head between the acquisition of the images modifies not only the intended anatomical location but also the anatomical orientation of the diffusion measurement. Through repeated acquisitions of multiple sets of each directionally weighted diffusion image, missing directions and locations in the scattered data can be filled in (157), at the expense of additional imaging time. Within-slice motions cannot be recovered easily because they corrupt the actual diffusion measurement, but the number of these are limited by the shorter slice acquisition time of EPI data, and they can be excluded as outliers in the fitting process. For the remaining data, different slice motion estimation methods have been proposed to make use of slice-to-volume matching. One of the key challenges in this problem is the low signal to noise of the DWI, which can impact the ability to recover slice positioning accurately. Approaches simplify the process either by first constructing a reference non-diffusion-weighted image and estimating remaining slice motion relative to that (157), or by constructing a reference tissue map from conventional MRI and estimating motion using a maximum likelihood framework (158), which additionally allows the estimation of geometric slice distortion present in the DTI slices. The final reconstruction involves a more complex process that must combine spatially and directionally scattered diffusion measurements made during fetal motion into a single diffusion tensor field on a regular voxel lattice. This scattered-data fitting process can be formulated in a least-squares framework (157) with constraints to preserve the positive definite properties in the final diffusion tensors. However, given the scattered nature of the fetal diffusion measurements, it is natural to consider more general, higher-order diffusion models that can take into account the larger spread of diffusion measurements induced by fetal motion and can provide a route to resolving ambiguities in areas of crossing fibers. This approach has been shown to improve fractional anisotropy measurements for fetal data (159). Once a regularly sampled set of diffusion profiles has been estimated, it can be analyzed through techniques such as DTI tractography to reconstruct the developing white matter tracts within the fetal brain.

5.2. Imaging Developing Brain Function: Functional MRI
A second area of key interest in brain development is the measurement of brain function. Functional MRI (fMRI) is used to provide a window into short-term blood oxygen level changes in the brain (160) in adults and children that are related to underlying tissue function. These have been used to map both responses to external stimuli (e.g., visual and auditory) or to map so-called resting-state brain activations (161). Such capabilities are of significant interest in fetal imaging to provide an understanding of developing brain function. Work on resting-state activations (without stimuli) have shown great promise in mapping the development of the so-called default mode in infants (162) and children (163, 164), and extending this work to show earlier stages of this process is of significant interest. Early work on fetuses has shown that it is possible to apply stimulus-driven methods, in cases of limited fetal motion, to study response to auditory stimuli (165) and visual stimuli (166, 167). All fMRI methods, however, rely on the detection of subtle temporal
variations in signal at each location in the brain across many repeated scans, and as such are highly sensitive to motion. In adults, even small motions need to be corrected for using techniques available in standard software tools to ensure no stimulus-correlated motions remain. For the techniques to be generally applicable for use in fetuses, either clinically or for realistically sized and unbiased neuroscience studies, it is essential that large-scale fetal head motion correction of the data be possible. Techniques developed for structural image motion correction should, in theory, contribute in this area, although adaptation of the scanning protocol (to include, for example, more repeated acquisitions to ensure full spatiotemporal coverage) may be required. An important additional factor is that of possible changes in geometric distortions that can occur in EPI data. Finally, more work is needed in the post hoc functional data analysis, to address the possibility of missing or scattered spatiotemporal data.

6. CONCLUSION

This review has provided background on the development of MRI as a tool to perform 3D imaging of the human fetal brain in utero without sedation. These developments are beginning to open a new window into early human brain growth that has so far been inaccessible to the neuroscientist and clinician. The availability of true, high-resolution 3D imaging of growing brain tissues will allow us to examine the key changes in the brain that form the basis for adult brain structure and function. These measurements include the precise spatiotemporal pattern of cortical folding and the process by which a unique folding pattern emerges in individuals. Such data may contribute to further refining and validating theories of brain folding (168–170). Measurements made in utero complement histological studies that provide a cellular-level understanding of tissues. Histology is unable to examine change and growth over time or to study 3D structural variability across large populations. An important new direction of future work will be to build stronger bridges between in utero measurements and histology. In terms of imaging methodology, two key directions for new work involve the development of fetal brain functional imaging and the quantification of white matter tract formation using diffusion imaging. Together, these imaging methods will be particularly important in understanding the process of initiating normal brain function, i.e., understanding the process of “software booting” of brain function that must occur when the underlying hardware has developed. Understanding the time line of functional development and how it relates to structural changes in humans will be an interesting new area of research that may bring new understanding of adult brain function and its variation. Another interesting direction is that of linking genetic information to accurate growth maps to understand in detail how genes modulate the pattern and order of local growth on a macroscopic scale. Better knowledge of the spatial and temporal variability of these events in healthy fetal brain growth may allow the construction of biomarkers for abnormal cortical development, which may have important applications in poorly understood conditions such as ventriculomegaly (78, 79). In terms of direct clinical intervention, the increased interest in fetal surgery (171) driven by newer, minimally invasive techniques (172) will depend on the availability of high-quality imaging for diagnosis, planning, and guidance (173). In conclusion, the combination of MRI physics with computer vision and biomedical image analysis techniques promises to dramatically expand our understanding of the human brain and provide a range of powerful new diagnostic tools.

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.
ACKNOWLEDGMENTS

The author would like to thank the National Institutes of Health (NIH) for research support (NS 061957, NS 055064) during the preparation of this manuscript. He also acknowledges the many contributions from the postdoctoral scholars who have worked in his lab, including Dr. K. Kim, Dr. P. Habas, Dr. V. Rajagopalan, Dr. J. Scott, Dr. F. Rousseau, Dr. C. Rodriguez, and Dr. C. Drapaca. Finally, he thanks his collaborators Dr. A.J. Barkovich, Dr. O.A. Glenn, and Dr. V. Cardenas for important contributions to this work.

LITERATURE CITED

Contents

Artificial Noses
 Shannon E. Stitzel, Matthew J. Aernecke, and David R. Walt ... 1

Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds
 Stephen F. Badyak, Doris Taylor, and Korkut Uygun .. 27

The Role of Body-on-a-Chip Devices in Drug and Toxicity Studies
 M.B. Esch, T.L. King, and M.L. Shuler ... 55

Chemical Strategies for Stem Cell Biology and Regenerative Medicine
 Saiyong Zhu, Wanguo Wei, and Sheng Ding ... 73

In Vitro Models of Traumatic Brain Injury
 Barclay Morrison III, Benjamin S. Elkin, Jean-Pierre Dollé, and Martin L. Yarmush 91

Multiscale Cancer Modeling
 Thomas S. Deisboeck, Zhibui Wang, Paul Macklin, and Vittorio Cristini 127

MRI-Guided Nanorobotic Systems for Therapeutic and Diagnostic Applications
 Panagiotis Vardelamos, Matthieu Fruchard, Antoine Ferreira, and Constantinos Marv-Tzis 157

Technologies for Micromanipulating, Imaging, and Phenotyping Small Invertebrates and Vertebrates
 Memet Fatih Yanik, Christopher B. Robde, and Carlos Pardo-Martin 185

Deformable Medical Image Registration: Setting the State of the Art with Discrete Methods
 Ben Glocker, Aristeidis Sotiras, Nikos Komodakis, and Nikos Paragios 219

Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine
 Gordana Vunjak-Novakovic, Kathy O. Lui, Nina Tandon, and Kenneth R. Chien 245

Corneal Biomechanics and Biomaterials
 Jeffrey W. Ruberti, Abhijit Sinha Roy, and Cynthia J. Roberts ... 269
Vision-Based Navigation in Image-Guided Interventions
Daniel J. Mirota, Masaru Ishii, and Gregory D. Hager ... 297

Microfluidic Reactors for Diagnostics Applications
Stephanie E. McCalla and Anubhav Tripathi ... 321

Mapping Fetal Brain Development In Utero Using Magnetic Resonance Imaging: The Big Bang of Brain Mapping
Colin Studholme ... 345

How Do Control-Based Approaches Enter into Biology?
Philip R. LeDuc, William C. Messner, and John P. Wikswo .. 369

Nuclear Mechanics in Disease
Monika Zwerger, Chin Yee Ho, and Jan Lammerding .. 397

Engineering Applications of Biomolecular Motors
Henry Hess ... 429

Nonthrombogenic Approaches to Cardiovascular Bioengineering
Song Li and Jeffrey J.D. Henry ... 451

Physiologic Cardiovascular Strain and Intrinsic Wave Imaging
Elisa Konofagou, Wei-Ning Lee, Jianwen Luo, Jean Provost, and Jonathan Vappou 477

In Vivo Delivery of RNAi with Lipid-Based Nanoparticles
Leaf Huang and Yang Liu ... 507

Current Status of Developments and Applications of Micro-CT
Erik L. Ritman .. 531

Indexes

Cumulative Index of Contributing Authors, Volumes 4–13 .. 553
Cumulative Index of Chapter Titles, Volumes 4–13 ... 557

Errata

An online log of corrections to Annual Review of Biomedical Engineering articles may be found at http://bioeng.annualreviews.org/