

DNS Cache Snooping

or

Snooping the Cache for Fun and Profit
Version 1.1 / February 2004

Luis Grangeia

lgrangeia@sysvalue.com

Abstract

This research paper presents an overview on the technique known as DNS cache snooping. Firstly, a brief
introduction to DNS is made followed by a discussion on common misconceptions regarding DNS sub-
systems. Then this relatively unknown technique is introduced, followed by a field study to assert the
overall exposure of the Internet to this threat. Also, a set of devised abuse scenarios that rely on cache
snooping is presented. This paper concludes with recommendations on how to reduce exposure to this
problem, including proposed changes to the BIND DNS server implementation.

Introduction

One of the most critical aspects of information security is awareness. One must be conscious of all possible
security weaknesses, however inconsequent they may seem when studied in isolation. In any network
where it is to be taken seriously, security is achieved by combining different countermeasures that work in
parallel to try to eliminate any “single point of failure” that compromises security. On the other end of the
network, a serious attacker, lacking an obvious “single point of failure”, will try to combine all the
seemingly inconsequent weaknesses to bypass security and successfully achieve his goals.

Being DNS the “invisible engine” behind just about every service available on the Internet, it seems
pertinent to raise awareness on a somewhat unknown information disclosure vulnerability known as DNS
cache snooping and its implications.

The author found that discussion on this subject is scarce, amounting to a few emails found on mailing lists
and newsgroups. No document presenting a concise definition was found, let alone explaining the several
ways of doing it or its security implications. It seems that there is general unawareness and diverse
misconceptions around this subject.

DNS Overview and Some Controversy

The DNS, or Domain Name System, is an elegantly designed distributed and fault-tolerant database. This
database contains, among other things, information on domains and hostnames and how they relate to the
IP addresses that are assigned to the various computer systems that compose the Internet.

As with any directory-based service, there are two main user approaches to the DNS system: the Publisher,
who wants to make his information available to others to look up; and the Browser who queries the system
for information for his personal use. This duality is transposed to the DNS architecture as a natural
separation of functionality, where sometimes a DNS system will function as a cache and store recently
queried information to optimize further local queries, and on other occasions the system will serve

information about hostnames and/or IP’s that it is responsible, or “authoritative”, about. As each of these
“use cases” has different objectives, it makes sense to compare both in regards to their requirements.

Following is a table describing the fundamental differences between DNS caches and servers.

 DNS Server DNS Cache

Availability
Should be able to respond to
queries from all around the

Internet

Should only respond to
queries that originate from a

local user base
Types of query that

it should answer non-recursive queries recursive queries

Design of a
software

implementation

Small, stateless, optimized
for speed, no internal cache

Must maintain state because
of recursive queries and an

internal cache
Records that it

should attempt to
resolve

Should only respond data
that it is authoritative about

Should attempt to resolve
any request

The need to separate “DNS servers” and “DNS caches” has been the source of controversy and discussion
[1] [12]. Some say that caches and servers should be run as independent services on different IP addresses,
while others maintain the opposite can also be secure.

The fact that most programs that implement DNS functionality bundle both functions into one software
package helps to this confusion. The most obvious example of this is the BIND (Berkley Internet Name
Domain) software. This DNS package allows for a very diverse set of configurations, and it is indeed
possible to configure it in a way that separates the DNS Server and Cache functions to some degree, but
issues remain to be resolved. These issues, as well as an example for a relatively secure BIND configuration
will be looked into in the final sections of this paper.

The fact that BIND can be configured securely does not mean that this is the norm. In fact, a small study
presented later in this paper shows that the opposite is true for the majority of the servers tested.

Therefore, while it may not be necessary to create different programs for the purpose, the author maintains
that a logical separation is needed, as it can greatly improve the security of the DNS infrastructure.

DNS Cache Snooping

DNS cache snooping is not a term the author just made up, it is known and discussed by some notable
DNS implementation developers, and a few interested DNS administrators have probably at least heard of
it.

After stumbling into the technique by doing research with the "dig" program [2], the author set out to the
Internet, in an attempt to uncover documentation about the subject, explaining what it is and ways to
exploit it.

Only two references to the subject were found available. Dan Bernstein, the creator of the djbdns software
package refers to the problem in his Website [3]:

“dnscache tries to prevent local users from snooping on other local users. It discards non-recursive
queries; it discards inverse queries; and it discards zone-transfer requests. If $HIDETTL is set,
dnscache always uses a TTL of 0 in its responses. In versions before 1.03, dnscache always uses a
TTL of 0 in its responses.”

Also, an email from Rob Mayoff [4] to the djbdns mailing list refers the problem by mentioning the
technique in more detail:

“If dnscache answered non-RD queries strictly from cached answers, then I could try to find out
whether other users have asked about domain X by sending a non-RD query for domain X. I can still
snoop less reliably by measuring dnscache's response time. Obviously if I am the admin, or have access
to the dnscache logs, then I have much greater snooping power.”

DNS cache snooping is then the process of determining whether a given Resource Record (RR) is (or not)
present on a given DNS cache. There are two ways of accomplishing this, and they are presented as
follows.

The Technique – The Ecological Way (Non-recursive Queries)

The most effective way to snoop a DNS cache is using iterative queries. One asks the cache for a given
resource record of any type (A, MX, CNAME, PTR, etc.) setting the RD (recursion desired) bit in the
query to zero. If the response is cached the response will be valid, else the cache will reply with information
of another server that can better answer our query, or most commonly, send back the root.hints file
contents.

Here is an example of using iterative queries to snoop a DNS cache. Output is abbreviated for illustrative
purposes:

$ dig @ns1.tvcabo.pt www.sidestep.pt A +norecursive

; <<>> DiG 9.2.2 <<>> @ns1.tvcabo.pt www.sidestep.pt A +norecursive
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10698
;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 7, ADDITIONAL: 7

;; QUESTION SECTION:
;www.sidestep.pt. IN A

;; AUTHORITY SECTION:
pt. 66823 IN NS ns.dns.pt.
pt. 66823 IN NS ns2.dns.pt.

;; ADDITIONAL SECTION:
ns.dns.pt. 11611 IN A 193.136.0.1
ns2.dns.pt. 7154 IN A 193.136.2.226

;; Query time: 3 msec
;; SERVER: 212.113.161.227#53(ns1.tvcabo.pt)
;; WHEN: Fri Jan 4 17:31:59 2004
;; MSG SIZE rcvd: 312

In this example, a query has been made to the DNS cache at ns1.tvcabo.pt for the www.sidestep.pt address
(A) record. Since the query was made with the RD (recursion desired) flag not set and the record was not
in its local cache, the server was unable to answer the query (note the ANSWER flag not set). Instead, it
sent back information on authoritative servers for the .pt top level domain (TLD) that can be further
questioned.

Note the following output, produced by the same command:

$ dig @ns1.tvcabo.pt www.sidestep.pt A +norecursive

; <<>> DiG 9.2.2 <<>> @ns1.tvcabo.pt www.sidestep.pt A +norecursive
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52370
;; flags: qr ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.sidestep.pt. IN A

;; ANSWER SECTION:
www.sidestep.pt. 28772 IN A 193.126.14.52

;; Query time: 4 msec
;; SERVER: 212.113.161.227#53(ns1.tvcabo.pt)
;; WHEN: Sun Jan 4 18:35:22 2004
;; MSG SIZE rcvd: 49

This time, the server returns a record that contains an answer to the query (the ANSWER section has
entries). Since a non-recursive query has been made, there is certainty that the record was already cached
locally, because a non-recursive query instructs the DNS cache not to use recursion in finding a response.

The Technique – The Polluting Way (Recursive Queries)

If only recursive queries are possible, there are still ways to determine with some degree of precision
whether a given record is or is not present in the cache. There is, however, one major disadvantage: using
recursive queries will pollute the cache, so if a given record is not present in the cache, it will be after the
first query is made.

The output of a recursive query to a DNS cache follows:

$ dig @ns1.tvcabo.pt www.sidestep.pt A +recursive

; <<>> DiG 9.2.2 <<>> @ns1.tvcabo.pt www.sidestep.pt A +recursive
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44516
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.sidestep.pt. IN A

;; ANSWER SECTION:
www.sidestep.pt. 6458 IN A 193.126.14.52

;; Query time: 13 msec
;; SERVER: 212.113.161.227#53(ns1.tvcabo.pt)
;; WHEN: Mon Jan 5 00:47:17 2004
;; MSG SIZE rcvd: 49

There is a high possibility that query was already cached, as this can be confirmed in two ways. Firstly, the
TTL (Time to Live) is suspiciously low; this is confirmed in the next code section:

$ dig @ns.sidestep.pt www.sidestep.pt A

; <<>> DiG 9.2.2 <<>> @ns.sidestep.pt www.sidestep.pt A
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53517
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:
;www.sidestep.pt. IN A

;; ANSWER SECTION:
www.sidestep.pt. 86400 IN A 193.126.14.52

;; AUTHORITY SECTION:
sidestep.pt. 259200 IN NS ns.sidestep.pt.
sidestep.pt. 259200 IN NS www.sidestep.pt.

;; ADDITIONAL SECTION:

ns.sidestep.pt. 86400 IN A 193.126.14.51

;; Query time: 1 msec
;; SERVER: 193.126.14.51#53(ns.sidestep.pt)
;; WHEN: Mon Jan 5 00:59:06 2004
;; MSG SIZE rcvd: 96

This query was made to the authoritative DNS server of the sidestep.pt domain and shows that the TTL of
the cached response was much lower that the initial set TTL. This is a good indicator that the answer was
already cached at ns1.tvcabo.pt.

Another way to look for cached responses is to observe the time that the query takes to process. If the
query time is approximately equal to the round trip time (RTT) of a packet to the server, then the answer
might have been already present in the cache. The author has learned from this technique on Rob Mayoff’s
email [4].

Note that the only tested DNS cache implementation that allows recursive queries while silently discarding
non-recursive queries is dnscache, a software part of the djbdns package.

Gathering potential targets

Before introducing ways to use the technique presented in this paper in an abusive way, the author of this
paper will attempt to illustrate the current state of DNS server configurations over the Internet. A small
empirical study was made to determine the extent to which it can be used around DNS systems worldwide.

To this, the author used the Internet DNS server list as compiled by Mike Schiffman in his recent DNS
research report [5] and removed all private and non-routable IP addresses. For each server in the list, two
UDP packets were sent, both containing a DNS query to translate the address www.google.com. One had
the RD flag set, the other had not. All the results of this study, including updated versions of this paper can
be found at http://www.syvalue.com/papers/DNS-Cache-Snooping/.

Graph 1:
Responses to Non Recursive Queries

REFUSED
643
3%

SERVFAIL
570
3%

NXDOMAIN
29
0%

Connection
timed out

7131
33%

NOERROR
12920
61%

Graph 2:
Responses to Recursive Queries

NXDOMAIN
34
0%

REFUSED
643
3%

SERVFAIL
124
1%

NOERROR
13214
62%

Connection
timed out

7278
34%

Graph 3:
Distribution of NOERROR Responses

non-
recursive

only
200
1%

recursive
and non-
recursive

12757
95%

recursive
only
507
4%

Graph 4:
"Open" DNS Caches

Timed out
servers
7278
34%

Closed
Recursion-
Available
servers

850
4%

Servers
without

recursion
available

2590
12%

Recursion-
Available

servers that
allow

recursive and
non-recursive
queries (open

caches)
10576
50%

The results did not surprise. Of the 21293 systems queried, 13464 produced a good reply (NOERROR) on
a non-recursive query to translate the address www.google.com (Graph 1). Out of those servers, 10576 had
recursion available (RA flag set on the answer) and allowed recursive as well as non-recursive queries
(Graph 4). These are “open” caches, as they can be used as caches and are misconfigured to allow
snooping by everyone.

This means that approximately 50% of the servers queried (or 76% if only servers that produced a
response are accounted for) are vulnerable to the DNS cache snooping technique. This means that if these
servers are being used as a DNS cache by some given population, one can use the technique to extract
information about its Internet surfing habits [6].

It appears that there is a target rich universe for using the cache snooping technique. The fact that there is
such a high percentage of viable targets makes for even more interesting ways to abuse this issue.

Abuse Scenario #1 – A Typosquatters’ Market Study

Typosquatting is a technique that became popular in early 2000, and involves putting up web sites with
names that are common misspellings for popular sites such as Hotmail. For instance, the addresses
www.hormail.com, www.hoymail.com and www.hotnail.com all redirect to www.superinternetdeals.com.
Also, www.hotmial.com seems to be a search engine (concordantly, at the time of this writing, four of the
ten most searched terms contained references to ‘e-mail’ or ‘Hotmail’). Some well known cases of
typosquatting include John Zuccarini [7], becoming known for registering more than 5000 domains, or the
more recent (and drastic) attempt of Verisign’s Site Finder of redirecting all non-existent .com domains to
its search page [8].

The most obvious use for typosquatting is to generate revenue from advertising, but it can also be used to
read email sent incorrectly for legitimate users [9] and even obtain possible active spam addresses.

Determining which domain generates more hits is usually guesswork. There is, however, a way to measure
to some extent if a domain is worth registering. The following technique relies on the high percentage of
DNS servers permitting non-recursive queries to all domains, as presented above.

The form of abuse is technically very simple: It involves querying a number of DNS servers that fulfill the
following requisites:

• Cache records for a given network/population

• Answer non-recursive queries

• Cache no-such domain records (NXDOMAIN) [11]

The actual query is a non-recursive one that asks if the non-existent domain is present in the server’s cache
and if it is, then a typo as been made recently by the users of that cache.

As an example, the author of this paper, in his home network, attempted (unsuccessfully) to access the
www.nonexistentdomain.net with his browser. Some time later, he snooped the local DNS cache with the
following query, made on another machine on the same network:

$ dig www.nonexistentdomain.net +norecursive

; <<>> DiG 9.2.1 <<>> www.nonexistentdomain.net +norecursive
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 47913
;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;www.nonexistentdomain.net. IN A

;; AUTHORITY SECTION:
net. 10726 IN SOA a.gtld-servers.net. nstld.verisign-
grs.com. 2004020800 1800 900 604800 86400

;; Query time: 8 msec
;; SERVER: 192.168.11.21#53(192.168.11.21)
;; WHEN: Sun Feb 8 18:25:07 2004
;; MSG SIZE rcvd: 116

As can be seen, the status of the reply is NXDOMAIN. The query is also cached, as can be observed by
the decreasing TTL in the SOA line [11].

If another hostname is tested, for instance www.nottriedbefore.com:

$ dig www.nottriedbefore.com +norecursive

; <<>> DiG 9.2.1 <<>> www.nontriedbefore.com +norecursive
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3648
;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 13

;; QUESTION SECTION:
;www.nottriedbefore.com. IN A

;; AUTHORITY SECTION:
com. 170162 IN NS A.GTLD-SERVERS.NET.
<abbreviated>
com. 170162 IN NS M.GTLD-SERVERS.NET.

;; ADDITIONAL SECTION:
A.GTLD-SERVERS.NET. 87409 IN A 192.5.6.30
<abbreviated>
M.GTLD-SERVERS.NET. 31013 IN A 192.55.83.30

;; Query time: 14 msec
;; SERVER: 192.168.11.21#53(192.168.11.21)
;; WHEN: Sun Feb 8 18:52:16 2004
;; MSG SIZE rcvd: 472

As no attempt as been made to access this domain, it is not cached.

This can be automated to query a large number of “important” DNS caches (such as ISP caches). If the
domain is present in a relatively high percentage of caches, it is a very good candidate for registering, as it
will likely generate a significant amount of hits.

Abuse Scenario #2 – A Different Way of Measuring Site Accesses

Another interesting use of cache snooping is determining if the users of a given cache are accessing some
domains more or less frequently. It can be useful to know if, for instance, a DNS cache used by a group of
servers has the address entry www.windowsupdate.com in its cache (which probably means that at least
some on the given population are being updated regularly), or if a certain obscure site is cached in multiple
places.

The same technique can be used as with the previous abuse scenario, but now the search will be for valid
cached records, instead of NXDOMAIN records. One can, for instance, automatically snoop a large
number of DNS caches to verify how a certain site is being accessed around the world.

Note that all these measures are approximate. They loose accuracy in a measure proportional to the initial
TTL of the Resource Record. For instance, if the initial TTL for the site www.sidestep.pt is 86400 seconds
(24 hours) then this address will be present in a cache for that period and various accesses will only count
as one. For better results it may be better to analyze the interval lengths in which a record is absent from a
cache and then make an educated (statistical) guess about hit frequency.

Abuse Scenario #3 – Locating Users on the Internet

Consider that Eve is communicating remotely with Bob via some out of band medium, such as a
telephone. Eve is also surfing the Web, but she doesn’t want her IP to be revealed to Bob, so she is
keeping herself on sites that seem trusted (trusteddomains.com) to avoid being logged. Bob, however,
wants to locate Eve, so he tries the following:

1. Bob dares Eve over the telephone to go to http://evilhackers.go.here.trustedomains.com, which is
a non-existent domain (NXDOMAIN).

2. After Eve unsuccessfully attempts to access, Bob will start to snoop a large number of reachable
DNS caches for the NXDOMAIN resource record of the evilhackers.go.here.trustedomains.com
domain.

3. If he finds a cached NXDOMAIN, there is a high probability that Eve is using that cache, which
(also, probably) means she is located nearby (eg. same ISP).

Most DNS caches hold negative caches from 3 to 24 hours which gives Bob a while to look for the cached
record. Given the vast number of DNS caches that are reachable from anywhere in the Internet, this attack
scenario could be successful in some situations. But if Eve is warned, she can simply change her default
DNS cache to point to a far away DNS cache, or to her own locally installed iterative resolver such as
dnscache (inaccessible via the Internet).

Abuse Scenario #4 – Tracking Email Conversations

Sometimes it would be useful if there was a way to know if for instance, two companies are exchanging
emails. Actually, it is possible to know if Alice’s mail server has exchanged emails with Bob’s mail server.
All that our curious user Eve has to do is as follows:

First, Eve must obtain the IP of the DNS cache used by Alice’s mail server to process queries. There are
several easy ways to do this, one is described here:

1. Eve controls the DNS responsible for the eve.com domain

2. Eve sets up tcpdump on the authoritative DNS for eve.com to listen to MX queries for the
evil.eve.com domain (non-existent)

3. Eve sends an email to a non-existent user at Alice’s domain with a “from” address such as
eve@evil.eve.com

4. Adam’s mail server will attempt to bounce back an error message to eve@evil.eve.com and the MX
query will be logged by tcpdump. The originating IP will be part of the DNS cache hierarchy used
by Alice’s mail server to attempt to find the MX record for evil.eve.com.

With the IP address acquired step 4, all Eve has to do is to snoop the DNS cache at that IP for the MX
record of Bob’s domain. If the record is cached, one can know that most likely a mail message has been
transferred recently between Alice’s and Bob’s mail relays.

Note that this attack is only possible if Alice is using a reachable DNS cache. This is further discussed in
the final section of this paper.

Abuse Scenario #5 – Time-based Session ID Generators

At every Web site that requires authentication, some form of maintaining session state between HTTP
requests is required. Frequently, a session ID is generated when the user first accesses the site, and then
that ID is passed to the user via a HTTP cookie, which is sent on every HTTP request. Some poorly
written session ID generators rely solely on the actual time of day to generate its “pseudo-random” part.
Usually seconds to microseconds are used for part of the entropy.

Thus, knowing exactly (by the second) when a user first accesses a given site can be helpful in predicting
session ID’s in an attempt to hijack a users session. Cached DNS information can help in this matter. By
looking at a cached record’s TTL, one can easily calculate the exact time when a user first accessed the time
(the time at when the record was first cached) by subtracting the difference between the initial TTL set by
the authoritative server and the cached TTL to the local time. This can be achieved by snooping the DNS
cache that the user is using for name resolutions.

Recommendations for Reducing Exposure

There are several guidelines that are already available and significantly reduce the exposure to this problem.

Recommendation 1: firstly, DNS caches should only be allowed access by local users or child caches. The
principle of caching is that of locality, so it makes no sense to allow a user from a totally different network
to access your caches. The sheer number of “open” caches around the Internet facilitates abuse scenarios
#1 to #3. As such, any DNS system (server/cache/hybrid) around the world should only respond non-
authoritatively to known (and topologically close) clients. The following diagram illustrates two valid non-
authoritatively DNS responses; in responses (3) and (4), there is an explicit trust relationship between
endpoints.

(1)
bob.sub.domain.com (A)?

DNS Cache
for

trusted.net

DNS Cache
for

clients.trusted.net

bob.sub.domain.com A
192.168.0.2

 (non-authoritative answer)
(4)

DNS client
@clients.trusted.net

(2)
bob.sub.domain.com (A)?

bob.sub.domain.com A
192.168.0.2

 (non-authoritative answer)
(3)

Only one possible exception to the above guideline is considered. In the event of a DNS server/cache
hybrid, it should be considered acceptable or even desired to cache information for child zones and to
serve that information to the world. For instance, the authoritative server for ‘domain.com’ could maintain
and serve cached records of child zones ‘sub.domain.com’ and ‘abc.domain.com’ to the world. For better
understanding, consider the following diagrams.

Request 1

(1)
bob.sub.domain.com (A)?

Authoritative
sub.domain.com

Server

Authoritative
domain.com

Server

bob.sub.domain.com A
192.168.0.2

(4)

Arbitrary
DNS client

(2)
bob.sub.domain.com (A)?

bob.sub.domain.com A
192.168.0.2

(3)

(1)
bob.sub.domain.com (A)?

Authoritative
sub.domain.com

Server

Authoritative
domain.com

Server

bob.sub.domain.com A
192.168.0.2

 (non-authoritative answer)
(2)

Arbitrary
DNS client

Request 2

In request 1, the authoritative domain.com server caches the authoritative sub.domain.com server’s
response. In the subsequent requests such as request 2, it is allowed to respond non-authoritatively while
this information remains cached. This can be useful to allow for temporary DNS server downtimes.

Recommendation 2: secondly, and most importantly, non-authoritative requests to DNS caches should
not be allowed. For instance dnscache, a popular caching-only DNS implementation, tries to prevent cache
snooping by refusing to answer non-recursive queries [3]. Another option is to never consult the cache
when responding to non-RD queries.

Unfortunately, at the time of this writing, the ability to discard non-recursive queries to the cache while
simultaneously allowing for non-recursive queries for the server’s authoritative domains does not seem to
be possible to do with BIND. An option for this configuration should be implemented on this software
package in the future.

Also, despite being able to eliminate the possibility to do non-recursive snooping, it continues to be
possible to snoop a cache using recursive queries, as described earlier in this paper. However, this method
is much more error prone and disturbs the cache, so it might not be very useful to potential abusers.

Recommendation 3: there is also a third new recommendation to be made that can further reduce
exposure to this risk. Some entropy can be added by DNS caches or even DNS servers when giving out
the initial TTL for a given record.

Pr
ob

ab
ilit

y

When a DNS cache is about to add an entry to its cache, it could add some entropy to the TTL that it
received from the authoritative server. By randomly adding or subtracting a small number of seconds to
the TTL, DNS cache snooping becomes virtually impossible to do with only recursive queries. This
measure also eliminates attacks such as the described abuse scenario #5.

A Safer BIND Configuration

As a conclusion, it is interesting to note that while vulnerabilities in the BIND implementation can be
blamed for the problems in the DNS infrastructure, poor configuration also seems to widespread. The
following configuration [13] is to be taken as an example to a safer BIND configuration. These settings
allow BIND to continue to be used as a cache by the networks “1.2.3.0/24” and “1.2.4.0/24”, while still
being able to respond authoritatively to queries regarding the domain “mydomain.com”, while ignoring all
others. Only relevant configuration options are displayed.

options {
 // to allow only specific hosts/networks to use the DNS server:
 allow-query { trusted; };

 // to allow only zone transfers to specific nameservers
 allow-transfer { other_ns; };
};

// Host / network grouping that maps “friendly” nameservers (such as secondary
nameservers)
acl other_ns {
 1.2.3.4; // secondary 1
 1.2.3.5; // secondary 2
 127.0.0.1; // localhost
};

// Host / network grouping that maps networks that are able to do queries to other
// records besides the au
acl trusted {
 127.0.0.1;
 1.2.3.0/24; // trusted net 1
 1.2.4.0/24; // trusted net 2
};

// authoritative zone
zone "mydomain.com" in {
 type master;
 allow-query { any; }; // allow queries to be made to this zone by anyone
};

// reverse zone for the 1.2.3.0/24 network
zone "3.2.1.in-addr.arpa" in {
 type master;
 allow-query { any; }; // allow queries to be made to this zone by anyone
};

Endnotes

[1] For one side of the discussion of separating DNS caches and servers in different programs, read
http://cr.yp.to/djbdns/separation.html.

[2] “dig” is a DNS diagnostic program that is part of the BIND software package, available at
http://www.isc.org/sw/bind/

[3] dnscache information, including mentions to cache snooping and protective measures:
http://cr.yp.to/djbdns/dnscache.html.

[4] Link to the original mail from Rob Mayoff concerning DNS cache snooping:
http://article.gmane.org/gmane.network.djbdns/1002/

[5] “Bound by Tradition: A Sampling of the Security Posture of the Internet's DNS Servers” by Mike
Schiffman, available at http://www.packetfactory.net/papers/DNS-posture/

[6] Note also that 62% (13214) of the inquired servers respond to arbitrary recursive queries to any
host/domain. This means that a user can configure its Internet connection to use any of these DNS servers
as a cache. This may not be desirable, as network resources are being used by others.

[7] “Domain Name Typosquatter Still Generating Millions”, CircleID,
http://www.circleid.com/article/101_0_1_0_C.

[8] “Verisign to Shut Down Site Finder”, Wired News,
http://www.wired.com/news/business/0,1367,60682,00.html.

[9] A search made in groups.google.com for emails ending in “@hotmial.com” returned almost 30,000
queries. This is indicative that a lot of people are erroneously typing their “from” or “to” address, thus
inadvertently sending emails to the wrong domain.

[10] One empirical study was made in late 2000, when a user registered the domain jptmail.com, very little
resembling hotmail.com. Even so, it managed to receive an average 32 email messages per day and totaled
3013 HTTP requests in one year. The results are available at http://www.nxdomain.net/jptmail.html.

[11] The caching of NXDOMAIN records was recommended mandatory by RFC 2308, available at
ftp://ftp.is.co.za/rfc/rfc2308.txt.

[12] Brad Knowles has started a discussion by heavily criticizing djbdns. The relevant part is where he
criticizes dnscache for not responding to queries with the RD bit cleared. The original mail to the freebsd-
chat mailing list can be found here:
http://groups.google.com/groups?selm=p05101519b8c51042d9db__10.0.1.8_%40ns.sol.net and the
response from the author can be found here: http://cr.yp.to/djbdns/knowles.html.

[13] Note that even with this configuration, until the option that modifies the behaviour to non-recursive
queries to non-authoritative domains exists in BIND, there is still the possibility for users in the “trusted”
networks to snoop the cache of this server.

