Chapter 5
The Rules of Coding: II
Page

Chapter 5

Rules of Coding II: methods

The preceding chapter described the proper use of the most basic program components: comments, assignment statements, sequential code, conditional constructs and iterative constructs. This chapter continues our description of the craft of programming by describing the proper use of methods (subroutines). As always, our goal is the construction of a program that supports and facilitates abstraction. Methods are fundamental to that purpose.

A note on terminology

The concept of the subroutine dates back to the earliest days of programming. Basically a subroutine is a piece of code, separate from the main program, that is executed only when explicitly called. Generally subroutines are divided into two classes called functions and procedures in some languages. Functions return a value; procedures do not return a value. In the parlance of object oriented programming, the word method has replaced subroutine almost completely. An examination of the indexes of Java programming books, for example, reveals either no entry for subroutine or simply the reference "subroutine – see method." Also, Java and C++ before it, have blurred the distinction between methods that return values and those that do not. However, we will use the terms "function" and "procedure" where the distinction is important.

1 Why use methods?

Methods add no computational power to a programming language; any program can, in principle, be written without them by simply putting appropriate code into the program. So why do we bother with methods? Why are they so important that virtually every programming language has methods and every computer has hardware instructions to facilitate method calls and returns?

Methods are important for several reasons, but the novice programmer is not likely to understand the relative importance of these reasons. Probably the least important is that they (can) save keystrokes; if a method is called several times, then writing it once is likely to result in fewer keystrokes than replacing each call with in-line code. For the same reason, programs with methods generally require less memory than their counterparts written without methods. Also, if a method is called from many places, it is certainly easier to modify or repair the single copy of the code rather than trying to find and fix every instance of the in-line code.

A far more important benefit is the support methods provide for breaking a large task into a collection of relatively independent smaller tasks. Methods support problem decomposition for the programmer, and reflect the decomposition to a reader. As a consequence, both the programmer and the reader can understand how a complex task is implemented by performing subtasks: how those tasks are used, and how they are implemented. The result is that both the programmer and the reader need to understand smaller program segments than if the program were written without methods. Smaller programs are easier to write and easier to get right.

Thus the greatest virtue of methods is their support of abstraction. All the caller needs to know to use a method is its specification
:

•
the way to call the method, including the method name, whether or not it returns a value, the returned value type, and its list of parameters (number, order, and type), and

•
its pre and postconditions: when can the method be used, and what does it do?

The first of these constitutes the method's syntax: how it is called; the second bullet is the method's semantics: what it does. Together, this information enables a user to write code that calls the method without knowing exactly how it works; indeed, if the specification is known, one can write code that uses the method even before the method has been written. Thus, methods provide an abstraction that the caller can use without knowledge or understanding of the underlying implementation. The abstraction also enables a programmer to write and modify a method without knowing exactly how it will be used; the implementation may change, but as long as the specification is maintained, the change will be transparent to its users.

1.1 Methods make programs easier to write

The abstraction supported by methods is a powerful tool in writing programs, regardless of what language we use or what programming discipline we follow. We are, quite simply, incapable of comprehending, understanding or writing large programs all at once, any more than we can understand an office building or an automobile as a collection of its thousands of components
. We compensate for this inability to understand large structures by abstracting their substructures and viewing them as a small collection of smaller (but possibly still large) structures. Similarly, we best solve large problems by breaking them into small collections of smaller problems and then solving the smaller problems (possibly by breaking them up into still smaller problems, and so on). Methods allow the program code to reflect the resulting problem decomposition; each method implements a solution to a subproblem, and that solution may well require other methods. For example, if we have determined that a problem requires that we read a table, then sort the table, and finally, display the contents, then we can divide the program into three methods and actually write the main method:

read(table);

sort(table);

display(table);

With this first level decomposition complete, we can now write the three methods. Not only do methods allow the program structure to reflect the problem decomposition, but the method calling mechanism simplifies the assembly of the various subproblem solutions into a single program.

Methods also facilitate team programming. Large programs are seldom written by one person. If programs were written without methods, programming teams would have to take pains to avoid interfering with each other’s work, as would happen if they chanced to use the same variable names. But with methods, once the specification has been agreed upon, individual programmers can proceed virtually independently.

Methods provide a mechanism for adding customized, high level operations to a programming language. For example, Java does not have an operation to sort an array. But you can easily write a sort method and then use it essentially as you would an operation in the language. This has benefit not only in writing the current program, but in writing other programs as well. When we next must sort, we can simply lift the sort method from one program and insert it in another. Taking this a step further, we can collect methods from many programmers and assemble then into a method or class library. Often we can solve large parts of a programming problem by using methods written by others. This "re-use rather than build" approach has an obvious benefit to both programming productivity and correctness, and it is one reason underlying the success of object-oriented languages.

Finally, methods make programs easier to test. One of the hardest parts of debugging is finding out exactly where an error has occurred. Methods allow us to test a program in pieces and hence isolate errors more easily. We can test methods individually by writing special calling programs (called drivers) that exercise the individual methods. We can test the calling program by writing dummy methods (called stubs). Verifying that every piece of a program is correct doesn’t, of course, insure that the whole will be correct. But testing a program in pieces, as facilitated by methods, goes a long way toward getting the program correct.

1.2 Methods make programs easier to read.

Methods make a program easier to read as well as to write. First, methods allow program segments (both calling programs and the methods themselves) to be shorter. A common recommendation is that no program segment should be longer than a page or two. The advantage isn't just that you can lay the entire program segment out on your desk for inspection without having to page through a long listing. Far more important is that well-conceived methods support the level of abstraction that makes a program easier to understand because the reader can ignore the details of the implementation. Consider for example a program that contains the line

sort(table);

Barring a programmer with a truly warped sense of humor, what is probably intended here is a sort of table. It’s clear what’s going on, although the details of which sorting algorithm is being used, and how it is implemented, are hidden. Contrast this with the twenty or so lines of code that would be necessary to implement a sort directly in the code. This would be longer, and not nearly as clear as to what was happening.

Methods allow readers to investigate or avoid detail as they wish. In the sort example above, a reader can look into the details of the specific sort algorithm by looking at the code for the method sort. The isolation of the code in a method makes it easier to concentrate on the specific issues relevant to the method: Is a good algorithm being used? Is it correctly implemented? Is it sufficiently efficient?

Finally, methods are how we implement the operations in classes, as we will see in detail in the next chapter.

2 The role of preconditions and postconditions

The most important virtue of methods -- their support of abstraction -- relies on our understanding clearly and unequivocally what the method does – its semantics, encapsulated in its precondition and postcondition. We will always include preconditions and postconditions with our methods; whenever feasible, they will be given formally, and whenever possible, they will be made Java executable. We regard them as important as the code itself.

Methods receive information from the outside either via parameters or via global variables and constants. Hence method preconditions will refer to parameters and globals. Methods send information to the outside by returning a value, by changing a parameter, or by changing a global variable. Hence method postconditions may refer to the returned value, to parameters, and to global variables, and to their relation to the incoming information
.

We will refer to parameters whose value is used but not changed as inbound parameters. Parameters whose value is assigned by the method are called outbound parameters. And parameters whose value is both used and changed are called inbound-outbound parameters. In the following, we refer to incoming values as those communicated to the method by inbound and inbound-outbound parameters, and outgoing values as those communicated to the calling program via outbound and inbound-outbound parameters.

Preconditions of methods may refer to incoming values but should not refer to outgoing values. A function postcondition describes the value returned to the calling program as a (mathematical) function of the incoming values. A procedure postcondition describes the relationship of outgoing values to incoming values.

2.1 Specifying pre and postconditions

Methods really have two sets of pre and postconditions. One is a property of the abstraction; the other is a property of the implementation. Since the abstraction's pre and postconditions are implementation independent, they are not Java checkable. We will instead include them as comments. The implementation specific pre and postconditions will be implemented as Java checkable assertions to the extent possible.

A Java method with pre and postconditions is essentially a complete users manual for the method. The method specifications give the syntax; the pre and postconditions give the semantics.

2.2 Implementing pre and postconditions

In previous chapters, we've seen how pre and postconditions can be implemented as assertions (calls to the methods in the Assert class) at the beginning and end of a method code. For example the following method swaps the ith and jth elements of the specified integer array. The preconditions ensure that i and j are valid array indices; the postcondition ensures that the swap has taken place and that nothing else has changed.

public static void swap(int[] a, int i, int j)

{

// Precondition: Check i and j for validity.

Assert.pre(0<=i && i<a.length,"i is out of the range of a");

Assert.pre(0<=j && j<a.length,"j is out of the range of a");

// Copy array a.

int[] old_a = a.clone();

// Swap

final int temp = a[i];

a[i] = a[j];

a[j] = temp;

// Postcondition:

// Check swapped values.

Assert.post(a[i]==old_a[j] && a[j]==old_a[i],"swap incorrect");

// Check all the other values to make sure nothing else changed.

boolean oldOK=true;

// Check from 0 to smaller of i and j.

for (int k=0; oldOK && k<Math.min(i,j); k++)

if (a[k]!= old_a [k]) oldOK = false;

// Check values between i and j.

for (int k=Math.min(i,j)+1; oldOK && k<Math.max(i,j); k++)

if (a[k]!=old_a[k]) oldOK = false;

// Check values from larger of i and j to the end.

for (int k=Math.max(i,j)+1; oldOK && k<a.length; k++)

if (a[k]!= old_a [k]) oldOK=false;

Assert.post(oldOK,"non-swapped values changed");

}

There are several problems with this strategy. First, the method code is cluttered up with assertions. In the example above, the three lines of the swap algorithm sit among many lines of assertions. Second, there is no guarantee that the preconditions will actually be evaluated before any of the method code statements are executed. We are on our honor not to put any code before the preconditions, but there is no enforcement. Similarly, there is no guarantee that the postconditions are evaluated after the last method statement. We could, either by accident or malice add code after the postcondition that invalidated the postcondition, making the method incorrect, and defeating the whole purpose of having formal assertions. And finally, checking the returned value from a method is tedious, often necessitating repeating the postcondition, especially in methods that have multiple return points. For example, the method below takes a single character as its parameter and returns a character whose value depends on the parameter

parameter
returned value

space

'b'

digit

'd'

anything else

's'

public static char charType(char c)

{

if (c==' ')

return 'b';

else

if ('0'<=c && c<='9')

return 'd';

else return 's';

}

Adding pre and postconditions, the method becomes more complex because we've had to capture the returned value. And the method is more difficult to read. Also, since we cannot do anything after the return statement, the postcondition must be evaluated before the return. It would be preferable to test the postcondition on the actual returned value.

public static char charType(char c)

{

// Precondition

Assert.pre(true,"");

char res = 's';

if (c==' ')

res = 'b';

else

if ('0'<=c && c<='9')

res = 'd';

Assert.post((c==' ' && res=='b')||

 ('0'<=c && c<='9' && res=='d')||

 (c!=' '&&(c<'0'||'9'<c && res == 's'));

return res;

}

How can this be done better? Some languages, such as Turing
 provide assertion statements including pre and postconditions and facilities for testing the returned value. The following is the Turing code for the charType method. Even if you have never studied Turing, you should be able to read and understand the code.

function charType(char c) res: char

pre true

post (c=' ' and res='b') or

 ('0'<=c and c<='9' and res = 'd') or

 (c not=' ' and (c<'0' or '9'<c) and res='d')

if c=' ' then

return 'b'

elseif '0'<=c and c<='9'

then return 'd'

else

return 's'

end if

end charType

The Turing pre statement is guaranteed to be executed before any of the lines of code; the post statement is guaranteed to be executed after the methods returns and is capable of examining the returned value (called res in the example program). Unfortunately, Java provides no such facilities, so we will have to construct them for ourselves.

We will do this by using two methods instead of one. We will sacrifice some efficiency to gain clarity, simplicity, and a guarantee that the pre and postcondition will be evaluated at the proper time. We will continue with the array entry swap method as our example. We divide the method into two methods, one that does the work, which we will call the implementation method, and one that checks the preconditions, calls the implementation method, and then checks postconditions. We will refer to this second method as the specification method. The outside world has access to the specification only. The specification checks the preconditions and then calls the implementation method, which is private and which we name by appending the letter M (for iMplementation) to the method name. When the implementation method has returned, the specification checks the postconditions and returns. The methods are shown below.

// Swap the values of a[i] and a[j]: specification.

public static void swap(int[] a, int i, int j)

{

// Precondition: Check i and j for validity.

Assert.pre(0<=i && i<a.length,"i is out of the range of a");

Assert.pre(0<=j && j<a.length,"j is out of the range of a");

// Copy array a.

int[] old_a = a.clone();

// Call implementation method.

swapM(a,i,j);

// Postcondition:

// Check swapped values.

Assert.post(a[i]==old_a[j] && a[j]==old_a[i],"swap incorrect");

// Check all the other values to make sure nothing else changed.

boolean oldOK=true;

// Check from 0 to the smaller of i and j.

for (int k=0; oldOK && k<Math.min(i,j); k++)

if (a[k]!= old_a [k]) oldOK = false;

// Check values between i and j.

for (int k=Math.min(i,j)+1; oldOK && k<Math.max(i,j); k++)

if (a[k]!=old_a[k]) oldOK = false;

// Check values from larger of i and j to the end.

for (int k=Math.max(i,j)+1; oldOK && k<a.length; k++)

if (a[k]!= old_a [k]) oldOK=false;

Assert.post(oldOK,"non-swapped values changed");

} // End of swap

// Swap the values of a[i] and a[j]: implementation.

private static void swapM(int[] a, int i, int j)

{

final int temp = a[i];

a[i] = a[j];

a[j] = temp;

} // End of swapM

There are several advantages to this approach. First, the actual swap method, swapM, is simple and straightforward and not cluttered with pre and postcondition code. Second, the two-stage call guarantees that the precondition will be evaluated before any of the swap implementation code. And similarly, the postcondition will be evaluated only after the swap implementation code has been completed. There's no possibility of anything sneaking in before the precondition or after the postcondition. Third, there is a clear separation of concern; the specification method defines the semantics of the swap; the implementation does the actual work. The underlying implementation can be changed as long as the semantics remains the same.

The two-stage approach can also hide from the outside user the fact that the implementation may require different parameters from the specification. For example, a search method might require, from the user's perspective, two parameters: an array to be searched and a key value. But if the actual search were implemented using a recursive binary search (which, of course, has the added precondition that the array is sorted), then two additional parameters would be required: the low and high index values of the subarray still being searched. So the user's call to

search(a, key);

would result in an implementation call to

searchM(a, key, 0, a.length-1);

The two-stage approach is also helpful with methods that return a value. The specification method checks the preconditions as before. It then creates a new variable giving it the value returned by the implementation method. This value can then easily participate in the postcondition. The specification then passes on the returned value. The method below is the specification for the square root. The precondition assures that the parameter is non-negative; the postcondition guarantees that the returned value is positive and is "close enough" to the square root. The implementation method is not shown.

public static double sqrt(int x)

{

// Precondition

Assert.pre(0<=x,"argument must be >=0");

// Get value from implementation.

double res = sqrtM(x);

// Postcondition

Assert.post(0 <= res && Math.abs(x-res*res) < TOLERANCE,

"computed sqrt value is incorrect");

// Return value.

return res;

} // End of sqrt

A final advantage of the two stage strategy is that it is very easy to disable the pre and postcondition checking if necessary. If efficiency is paramount, for example, in a real-time application, then the specification method can be removed entirely and the implementation method renamed (to remove the M). Alternatively, the specification method can remain, but with only one line of code: the line that calls the implementation. But this should be done in only the most unusual situation where the last microsecond must be wrung out of the code. Disabling the pre and postcondition checking removes an important assurance of correctness and may make later modifications to the program more difficult and less likely to be correct.

2.3 A caveat concerning actual parameters

There is a precondition for methods that is not generally stated, and will not be caught at runtime, and may or may not result in a runtime error. The correctness of many methods rests on an unstated precondition that each actual parameter is distinct from other parameters. This precondition is violated, for example, by a call of the form

sub (x,x);

Violation of the precondition does not always cause an error; for example, if the method swap is called with the same actual parameter for both array indices to be swapped, as in the call

swap(a,x,x);

the method works correctly and the postcondition is satisfied. However, consider the following alternate definition of swap (which we call swap2M) for an integer array. We assume the same swap specification method as before.

public void swap2M (int[] a, int i, int j)

{

a[i] = a[i] + a[j];

a[j] = a[i] - a[j];

a[i] = a[i] - a[j];

}

This might appear to be a hacker's dream -- it does not use any temporary storage --it saves space!
 And it works just fine — so long as the two actual parameters are distinct (and there is no integer overflow or underflow). But if swap2M is called using the same variable for both array indices, as with the command

swap(a,x,x);

then the weakest precondition that will provide the desired postcondition is

assert(a[i] == 0 && a[j] == 0);

Note that swap2M works as intended if the actual parameters are distinct, even if the corresponding array elements are have the same value.

We could solve the problem with swap2M by adding an additional precondition that the two array indices be different:

Assert.pre(i!=j,"array indices must be different");

That would avoid the error, but by strengthening the precondition, would make the method a little less useful. Alternatively, we could fix the code to avoid the problem.

public void swapM2 (int[] a, int i, int j)

{

if (i != j)

{

a[i] = a[i} + a[j};

a[j] = a[i] - a[j];

a[i] = a[i] - a[j];

}

}

This is the preferred solution because it does not require a stronger precondition

A similar problem can be seen in the simple example below. The method sets its outbound parameter to one greater than its inbound parameter, but violates its postcondition if the same variable is used for both actual parameters. Assume that MyInt is a user defined class whose objects each hold one integer, and which provides the writer and reader methods: setInt(int i), and getInt().

// Set value of b to be one more than the value of a.

public static void bumpup(MyInt a, MyInt b)

{

// Precondition

Assert.pre(true,"");

b.setInt(a.getInt()+1);

// Postcondition

Assert.post(b.getInt() == a.getInt() + 1)

}

If this method is called by

bumpup (x,x);

we will get a postcondition violation because x != x+1. We can fix the problem, again, by either strengthening the precondition to ensure that the two parameter objects be distinct:

Assert.pre(a != b, "arguments must be distinct");

or, better, we can change the assertions and leave the precondition weak.

public static void bumpup(MyInt a, MyInt b)

{

// Precondition

Assert.pre(true,"");

MyInt old_a = new MyInt(a.getInt());

b.setInt(a.getInt()+1);

// Postcondition

Assert.post(b.getInt() == old_a.getInt() + 1),"incorrect result");

 }

We are left in an uncomfortable situation: for some methods, duplicated parameters pose no problem, while for others, duplicated parameters cause the method's postcondition to fail. Our best advice is that whenever you write a method, examine its behavior when actual parameters are duplicated. If the duplicated parameters cause a problem, then either strengthen the precondition to prohibit duplication, or, better yet, change the method code to handle the duplication gracefully.

3 Functions

Functions are methods that compute a single value. The value need not be 'simple' – it can be a String, an array, or any other object. When a function name, together with an appropriate list of parameters, occurs in an expression, the function is called when the expression is evaluated.

3.1 Names of Functions

A function is called by using its name, together with a suitable parameter list, in an expression. Often a function call occurs as a value in an expression; in this case, it is appropriate that the function name be noun-like and describe the value computed. This is the case of names of built-in functions such as max, length, and abs. Boolean functions often determine whether a condition holds; names of these functions are often used as tests and reflect the condition tested for, such as the built-in eof (end-of-file) function.

3.2 Using Functions

A function has a (possibly empty) list of parameters and produces exactly one outbound value that replaces the function call in the expression from which it was called.

Good programming practice generally dictates that execution of a function method should not change a program's state; this is commonly referred to as not having any side effects. That means that a function should not perform any input or output, and execution of a function should not change the value of any program variable. (Generally, of course, the statement in which a method call is embedded will indeed cause a change of program state, but execution of the function call should not.)

As always, there are exceptions to the "no side effects" rule. It is completely reasonable, for example, for a method to keep track of the number of times it has been called by incrementing a global variable on each call. The global variable can either be an instance variable (in which case we are accumulating the number of method calls in each object), or a class variable (in which case we are determining the number of calls to that method over all objects of that class). Instrumenting methods in this way can be useful, for example, in speeding up programs. The call statistics show where efficiency improvements are likely to pay off.

Java allows function calls to stand on their own as complete statements. For example,

Math.sqrt(9);

is a valid Java statement and has the value 3. But if a function call has no side effects, such standalone calls are essentially useless. However, it is sometimes useful for a method to return a value even when it will be used alone. For example, the loop invariant assertion method (Assert.inv) returns true if the assertion is true (and, of course, throws an assertion exception if the assertion is false). The invariant can be used by itself:

Assert.inv(x >= 0,"argument must be >= 0");

or it could be used as part of a boolean expression, for example, in a loop exit test:

while (Assert.inv(x >= 0,"argument must be >=0") && i < n){...}

3.3 Examples of functions

The function largestOfThree takes three integer parameters and returns the value of the largest one. Note our convention of preceding the header line with a brief description of the function's purpose. This is intended to help a user decide whether this is a method of interest; it can be informal, and it may even ignore some important details because those details are addressed in the pre and postcondition.

Finding the largest of three integer values

// Find the largest of three integers: specification.

public static int largestOfThree(int a, int b, int c)

{

// Precondition

Assert.pre(true,"");

int res = largestOfThreeM(a,b,c);

// Postcondition

Assert.post((res==a || res==b || res==c) && // Result is one of the

 // parameter values.

 (res >=a && res>=b && res>=c),

 "maximum is incorrect");

return res;

}

// Find the largest of three integers: implementation.

private static intlargestOfThreeM(int a, int b, int c)

{

if (a>b && a>c)

return a;

else // a is not the largest.

if (b>a && b>c)

return b;

else // neither a nor b is the largest.

return c;

}

Notice that the code given does not have the single-entry, single-exit property, but it satisfies the criteria we've established for violating this convention:

•
The method body consists of code that ends in a selection structure.

•
Each execution branch through the selection structure terminates in a return statement.

Finding the index of the minimum value of a subarray

// Find the index of the minimum value in the subarray of b

// starting at index lo and going to the end of the array.

// Specification

public static int indexOfMin(int[] b, int lo)

{

// Precondition

Assert.pre(0 <= lo && lo < b.length,"low index out of range");

int res = indexOfMinM(b, lo);

// Postcondition

// b[res] == (Min j: lo <= j < b.length: b[j])

return res;

}

// Find the index of the minimum value in the subarray of b

// starting at index lo and going to the end of the array.

// Implementation

private static int indexOfMinM(int[] b, int lo)

{

int lowIndex = lo;

for (int i = lo+1;

 Assert.inv(b[lowIndex]<=b[i-1],"wrong minimum") && i < b.length;

 i++)

if (b[i] < b[lowIndex])

lowIndex = i;

// Invariant: b[lowIndex]==(Min j: lo <= j <= i: b[j])

// lowIndex is the index of the lowest value in b[lo…i]

return lowIndex;

}

Notice here that we have chosen not to check the full invariant, but we have provided a check to make sure that the b[lowIndex] is less than or equal to the most recently tested element of the array.

Sequential search of an array

// Determine whether a specified value occurs in an array.

// Specification

public static boolean search(int[] b, int key)

{

// Precondition

Assert.pre(true,"");

boolean res = searchM(b,key);

// Postcondition

// res == (Ei: 0 <= i < b.length: b[i] == key)

}

// Determine whether a specified value occurs in an array.

// Implementation

private static boolean searchM(int[] b, int key)

{

int i = 0; // Loop index.

while(true)

{

// Inv: (Aj: 0 <= j < i: b[j] != key)

// Have not found key in b[0…i-1]

Assert.inv(i!=0||b[i-1] != key,"search error");

if (i == b.length || b[i] == key) // SC eval

break;

i++;

}

return (i < b.length);

}

End of examples of functions

4 Procedures

Procedures are methods that change the state of a computation – that is, they should change the value of variables, or read input, or produce output. Procedure calls occur in programs as commands; execution of a procedure call causes the action specified by the procedure definition to be performed. As with functions, procedures are independent blocks of code that are executed only when explicitly called.

4.1 Names of Procedures

Recall that functions compute values and are best named as nouns or conditions. Procedures, in contrast, perform actions and are best named as verbs.

4.2 Using Procedures

A procedure has a possibly empty list of parameters that can be any combination of inbound, outbound and inbound-outbound. When a procedure is called, execution of the calling program is suspended and the code of the procedure is executed. When the procedure terminates, the values of program variables have been changed by whatever assignments to outbound or inbound-outbound parameters, assignments to global variables, or I/O were made by the procedure, and execution of the calling program is resumed.

As with functions, procedures have preconditions that assert properties of the incoming values (parameters and globals). But because they cause a change in program state, the postconditions of a procedure describe relations between values read by the procedure, parameter values passed to the procedure, output produced by the procedure, parameter values changed by the procedure, and global variables changed by the procedure.

Inbound parameters to a procedure can be referred to in both pre and postconditions by the formal parameter name. The values of outbound parameters are not of interest in a precondition, and the parameter name can be used in a postcondition to refer to their value when exiting a procedure. But both the original and final values of an inbound-outbound parameter are important. Our convention, as shown in previous chapters, is to capture the original value of an inbound-outbound parameter or global variable in a local variable called "old_" followed by the variable name. This is illustrated below with the swap method specification.

public static void swap(int[] a, int x, int y)

{

// Precondition

Assert.pre(true,"");

int old_ax = a[x];

int old_ay = a[y];

swapM(a,x,y);

// Postcondition

Assert.post(a[y] == old_ax && a[x] == old_ay, "swap error");

}

Recall that proper use of a method requires that the precondition be satisfied; this requires that the procedure precondition be 'translated' to an assertion involving the calling program's values rather than the method's formal parameters. Following the execution of the procedure, the programmer can assume that the procedure's postcondition (suitably translated into the calling program's variables) holds. Formally, if assertion A is true immediately before the method call, then A must imply P, the (translated) method precondition. Immediately following procedure execution, the state of the actual parameters that occur in A will be changed so that they satisfy the (suitably translated) procedure postcondition. As with functions, a careful statement of a rule of inference for procedure calls is beyond our scope.

4.3 Examples of procedures

4.3.1 Get a valid value

Procedures are widely used for performing various input-output tasks. Giving instructions to a user, for example, is a task that may or may not call for user input, but in any case constitutes a task that may change as users' needs change or become better understood. Similarly, presenting output constitutes a task that may be parameterized by formatting considerations and user requests. In either case, the task is nicely isolated from other matters by encapsulating it in a procedure.

The following procedure illustrates a simple scheme for obtaining user input that satisfies the program's precondition. In this case, an acceptable value is an integer between the bounds lo and hi. The version we show here is greatly simplified compared to an 'industrial strength' solution because we assume the user’s input will be an integer, but not necessarily in the appropriate range. A more realistic and challenging problem is to make no prior assumptions about the user’s input; it might contain digits, spaces, letters, or perhaps nothing at all. Then the input must be read as a string, verified to determine if it is a valid integer, and if it is, converted to the appropriate value. Alternatively, the input can be read as integer with non-integer input handled with exceptions. As always, because primitive types cannot be outbound parameter, we will use the simple MyInt class for our outbound parameter.

// Get an integer input in a specified range from a user.

public static void getBoundedInput(MyInt inValue, int lo, int hi)

{

// Precondition

Assert.pre(lo <= hi,"lo must be <= hi"); // Bound must be satisfyable.

getBoundedInputM(inValue,lo,hi);

// Postcondition

Assert.post(lo <= inValue && inValue <= hi,"input value out fo range");

}

private static void getBoundedInputM(MyInt inValue, int lo, int hi)

{

while(true)

{

System.out.println("Please enter an integer from "+lo+" to "+hi+".");

inValue.setInt(Integer.parseInt(stdin.readLine()));

// Inv: inValue contains the latest value input.

// All previous input values were out of range.

if (lo <= inValue.getValue() && inValue.getValue() <= hi) break;

System.out.println("Sorry, your entry of "+inValue.getInt()+

+ " was out of range.");

}

System.out.println("Thanks for entering "+inValue.getValue());

}

4.3.2 Selection sort

Selection sort is probably the simplest sorting algorithm. It is also a good sorting technique for small lists in many situations. Selection sort begins with an unsorted collection, or set of values; it creates a sorted list containing the same values. The strategy of selection sort is to initialize the output list to empty, and then repeatedly select and move the minimum element from the unsorted set to the sorted output list. The conventional implementation of selection sort begins with an array that contains the unsorted set. The sorting is done “in place” – that is, with only a few additional variables – by using the same array to hold the diminishing remaining unsorted set and the growing sorted list. At each stage the array consists of two disjoint parts: the growing sorted list, and the shrinking unsorted set. Initially, the sorted list is empty and the unsorted set occupies the entire array; finally, the sorted list occupies the entire array.

We first add two important predicates to our lexicon to facilitate writing assertions about sorting programs. The first predicate, isPerm(b,lob,hib,c,loc,hic), asserts that the list of values in array b from b[lob] through b[hib] is a permutation of the list of values in array c from c[loc] through c[hic]. This means that every value in b[lob] through b[hib] occurs in c[loc] through c[hic], and the values occur the same number of times. Clearly one requirement of a sorting algorithm for arrays is that the array contain the same set of values after sorting as it did prior to sorting. Formally, isPerm can be defined as follows:

isPerm(b, lob,hib,c,loc,hic) ==

(A i: lob <= i <= hib : (Num j : lob <= j <= hib : b[j] == b[i]) ==

(Num j : loc <= j <= hic : c[j] = b[i]))

To ease the burden of writing these predicates, we will usually write isPerm(b,c) instead of isPerm(b,0,b.length-1,c,0,c.length-1). Note that the definition of isPerm implies that empty arrays are permutations of one another, that is,

isPerm(b, lob, lob-1, c, loc, loc-1)

is always true.

The second new predicate isSorted(b,lob,hib,"<=") asserts that the subarray b[lob…hib] is sorted in non-decreasing order and may contain duplicates:

isSorted(b,lob,hib,"<=") == (Aj : lob <= j < hib : b[j] <= b[j+1])

The last parameter of isSorted can be "<", "<=", ">" or ">="
. For brevity, we'll usually write isSorted(b,"<=") to denote isSorted(b,0,b.length-1,"<="), Note that the definition of isSorted implies that all empty and one element arrays are sorted.

Together, isPerm and isSorted make it easy to state the postcondition for sorting an array b if a copy of the original array is stored in old_b:

// Postcondition:

Assert.post(isPerm(old_b, b) && isSorted(b,<=),"sort error");

The code for selection sort is marvelously easy to write if we assume the availability of two methods, swap and indexOfMin, both of which we’ve given previously. Recall that the method indexOfMin finds the index of the smallest entry of a specified subarray. The specification for indexOfMin is the following

// Find the index of the minimum value in the subarray of b

// starting at lo and going to the end of the array.

public static int indexOfMin(int[] b, int lo)

{

// Precondition

// 0 <= lo && lo < b.length

// Postcondition

// b[res] == (Min j: lo <= j < b.length: b[j])

}

With these methods in hand, selection sort is straightforward:

// Selection sort of an array: specification

public static void selectionSort(int[] b)

{

// Precondition

Assert.pre(true,"");

// Capture original array value.

int[] old_b = b.clone();

selectionSortM(b);

// Postcondition

Assert.post(isPerm(b, old_b) && isSorted(b,"<="),"sort error");

}

private static void selectionSortM(int[] b)

{

for (int i = 0; i < b.length; i++)

swap(b, i, indexOfMin(b, i));

Assert.inv(isPerm(old_b,b) && isSorted(b, 0, i, "<="),"sort error");

}

But the conventional form of writing selection sort makes a simple “optimization”. Note that each execution of the loop body of selection sort extends the sorted list by moving a single value from the unsorted subarray into its final position in the array. After n-1 values have been moved into place by swapping, the final value must be in its proper place. Consequently, the loop can be stopped after only n-1 iterations:

private static void selectionSortM(int[] b)

{

for (int i = 0; i < b.length-1; i++)

swap(b, i, indexOfMin(b, i));

Assert.inv(isPerm(old_b,b) && isSorted(b, 0, i, "<="),"sort error");

// and Max(b[0…i]) <= Min(b[i+1…b.length-1])

}

This change weakens the invariant at the termination of the loop, however, since the invariant now only assures that all but the last entry of the array are sorted. Is the invariant sufficient to establish the postcondition? In fact, it is not – the invariant must be strengthened as it is in the above version by conjoining an additional clause to the invariant stating that not only is the sorted part sorted, but the largest element in the sorted part is less than or equal to the smallest element in the unsorted part. In other words, no element from the unsorted part will ever displace an element in the sorted part, and hence the elements in the sorted part are not only sorted, but in their final location as well. Then on loop exit, if all but one element are in the right place, then the last element has no choice but to be in its rightful place as well.

4.3.3 The Dutch National Flag

The Dutch flag consists of three stripes colored red, white and blue. Suppose the flag had been cut into thin strips, but each strip is of a single color, and we are faced with the problem of reassembling it into its proper form. Now forget that this classic sorting problem is really silly and consider its manifestation as an array problem in which the array holds three values, which we'll refer to as R, W and B. Our problem is to rearrange the values so that all the Rs come first, then the Ws, and finally the Bs. Note that we are required to rearrange the values rather than simply counting the number of each and then re-writing the array, and besides, that would require two passes over the array. The problem is interesting (and classic) because it can be solved elegantly with a single pass, and by only comparing and swapping array entries. The secret of the elegant solution is a well-chosen loop invariant.

The strategy for solving the problem in one pass is easy to understand if the loop invariant is presented as a diagram showing the state of the array in the midst of being sorted. Assume the array has been partially sorted so that the first i elements, from element 0 through i-1 are 'R'; elements i through j–1 are 'W', and elements k+1 through n are 'B' (see figure below). Elements j through k are not yet sorted and are of unknown color. Each execution of the loop body will place one of the unknown characters into its proper place and update i, j, and k as appropriate. Note that each pointer indicates the position where the next value of its color will be moved.

[image: image1.wmf]R

R

R

R

i-1

i

W

B

W

B

?

?

j

k

k+1

n

•

•

•

•

•

•

•

•

•

•

•

•

0

The loop invariant of the Dutch National Flag algorithm.

The loop should terminate when the unknown part is empty. Hence one possible exit condition is

if (j == k+1) break;

An informal but clear statement of the loop invariant can be given as

Inv: f[0]...f[i-1] == 'R' && f[i...j-1] == 'W' && f[k+1...n] == 'B'

The body of the loop examines an element of the unknown part (we could pick any of the unknown elements, but it is convenient to use f[j]), puts it into its proper place, and updates i, j, and k as needed. There are three possibilities.

•
If f[j] is 'R', then f[j] can be swapped with f[i] and both i and j incremented.

•
If f[j] is 'W', then we need only increment j.

•
If f[j] is 'B', then we can swap f[j] with f[k] and decrement k.

It is straightforward to construct a termination argument (based on a variant function) because in each case we increase the size of one of the known areas.
Given the description of the algorithm and the choice of where the pointers point (we could have them point to where the last value was placed rather than to where the next value will be placed), the loop nearly writes itself. The initialization required to make the invariant true the first time clearly places i and j at the first position of the array, and k at the last. The complete method follows:

// Sort a character array according to the ordering 'R' < 'W' < 'B'

private static void dutchFlagM(char[] f)

{

int i=0; // Marks one past the end of R

int j=0; // Marks one past the end of W

int k=f.length-1 // Marks one before the start of B

while(true)

{

// Inv: f[0...i-1] are known to be R.

 // f[i...j-1] are known to be W.

 // f[j...k] are of unknown color.

 // f[k+1...f.length-1] are known to be B.

if (j == k+1) break;

if (f[j] ==
'R') // Red

{

swap(f,i,j);

i++;

j++;

}

else

if (f[j] == 'W') // White

{

j++;

}

else // f[j] must be Blue

{

swap(f,j,k);

k--;

}

} End dutchFlag

The technique used for the Dutch National Flag problem is one way of approaching an extremely important problem: that of partitioning the values of an array. We'll see a great deal of the partitioning problem when we discuss the sorting algorithm known as quicksort.

5 Tracing methods

One way to understand how a program works is to trace the program. Tracing means simply executing the code by hand, in essence 'playing computer'. This is easy for code without methods; you just keep track of which line of code is being executed and the value of each variable. When a value changes, you simply cross out the old value and write in the new one. But methods complicate the process.

We consider functions first. When a function is called, for example, we must note where we left off in the calling program, begin executing the function, and when it terminates, return the function value and resume the calling code. One way to do this is by using the 'overlapping page technique'. We assume that the program you are tracing is on a sheet of paper and that each method is on a separate sheet. When a function is called, you mark the point of suspension (the function call), and then place on top of that sheet another sheet with the code of the function. Next you assign each of the formal parameters in the function the value of the corresponding actual parameter in the call. You are then ready to trace the function code. When the function terminates (by executing a return statement), you lift off the function sheet, revealing the calling program underneath, plug in the returned value for the call, and resume. This technique works well even when one method calls another; you just keep piling on the papers. Each method call results in a new sheet on the stack; each termination causes the removal of the top sheet and the resumption the code underneath at the suspension point. For example, if the main program calls function f1 which calls f2 which calls f3, then, during execution of f3, the stack would look like this.

[image: image2.wmf]// Main

//

function f1

f1...

//

function f2

f2...

// function f3

f3...

Tracing a procedure is similar to tracing a function call and can be easily done with the overlapping page technique. The only difference is that changes to objects referenced by the actual parameters carry back to the calling program. So as a procedure executes, changes to referenced objects must be made in the calling method.

This technique for tracing the execution of methods mimics what actually occurs during program execution. The processor maintains a runtime stack of currently executing code; initially, the main program is the only thing on the stack, but when a method is called, a representation of the method code is pushed onto the stack. This has the effect of masking such things as variables not local to the method and changing the environment in which the code is executing.
6 Summary

Methods are a basic tool in the decomposition of programming tasks and writing programs so they can be understood. The decomposition of an algorithm into methods should reflect a thoughtful and orderly approach to problem solving. That goal will be supported by following these programming guidelines.

•
Every method should perform a single well-defined task. The task should be characterized by precise pre and postconditions.

•
Methods should access only the information required to perform their task.

•
A method that produces a single value should usually be written as a function.

•
Function methods should not have side effects. They should not change program state nor should they perform I/O.

•
Methods should generally follow the single entry, single exit discipline. We violate that rule only for function methods whose body ends in a conditional statement such that every branch of the conditional statement terminates in a return statement. Procedures should terminate by reaching the end of the procedure body; avoid use of the return statement because that introduces another exit point and violates the single entry, single exit discipline.

Exercises:

1. Write function methods for the following tasks:

a. Find the sum of the entries of a numerical subarray.

b. Find both the minimum and maximum values of a subarray.

c. Determine whether a subarray is sorted.

d. Determine whether one subarray is a permutation of another. Do not assume that the subarrays are substructures of the same array.

2. The Dutch national flag algorithm can be implemented in a variety of ways. Consider, for example, the implementation that checks the value under the k pointer rather than the j pointer. Discuss the differences in the invariant and the resulting code.

(answer: this implementation requires two swaps each time a white is found. It looks worse.)

3. Can the Dutch national flag algorithm be generalized to handle a flag with only two colors? Four colors? Discuss each of these cases.

old wordcount 10422
Chapter 5: Rules of Coding II: methods

11
Why use methods?

1.1
Methods make programs easier to write
2
1.2
Methods make programs easier to read.
3
2
The role of preconditions and postconditions
4
2.1
Specifying pre and postconditions
4
2.2
Implementing pre and postconditions
5
2.3
A caveat concerning actual parameters
9
3
Functions
11
3.1
Names of Functions
11
3.2
Using Functions
12
3.3
Examples of functions
12
Finding the largest of three integer values
13
Finding the index of the minimum value of a subarray
14
Sequential search of an array
15
End of examples of functions
15
4
Procedures
15
4.1
Names of Procedures
15
4.2
Using Procedures
15
4.3
Examples of procedures
16
4.3.1
Get a valid value
16
4.3.2
Selection sort
17
4.3.3
The Dutch National Flag
19
5
Tracing methods
21
6
Summary
22
7
Exercises:
23

�As we mentioned earlier, a program specification may involve more than we generally include. For example, the specification for time-critical code may require that a computation must not take longer than a specified amount of time.

�When Edsgar Dijkstra, one of the guiding lights of programming, was awarded the Turing Award by the Association of Computing Machinery, he titled his Turing Lecture "On our inability to understand very much."

�If the procedure performs input/output, the pre and postconditions may also refer to the input and output streams. We will generally ignore such complications, but they are clearly important

� Officially, of course, Java cannot change actual parameters and hence all parameters are inbound only. If this were strictly true, than the usefulness of Java methods would be severely limited. However, if an actual parameter is a reference to an object, then that object can be changed, even though the reference to it cannot be changed. This is what we mean by an outgoing parameter.

� This section repeats material from a previous chapter. When we figure out where it works best, we will eliminate the one. But meanwhile, it doesn't hurt to read this a second time.

� Turing is pedagogical programming derived from Pascal and developed by Ric Holt others at Holt Software Associates in Toronto, Canada.

�Don't take us seriously. The saving of space in this case is truly negligible for almost any application, and should never be considered a relevant argument unless special circumstances warrant it.

�In fact, it can be any binary relation between values of the array, and we could be justifiably criticized by not casting the predicate more generally. But for now our concerns are sorting, and the mnemonic of isSorted will be helpful.

© 2001 Donald F. Stanat & Stephen F. Weiss
7/9/01
Printed on 7/9/01 at 4:37 PM

_1023617981.doc

R

R

R

R

i-1

i

W

B

W

B

?

?

j

k

k+1

n

•••

•••

•••

•••

0

_1023686088.doc

// Main

// function f1 f1...

// function f2 f2...

// function f3 f3...

