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Abstract
Document-based code injection attacks, where-in malicious
code (coined shellcode) is embedded in a document, have
quickly replaced network-service based exploits as the pre-
ferred method of attack. In this paper, we present a new tech-
nique to aid in forensic and diagnostic analysis of malicious
documents detected using dynamic code analysis techniques
— namely, automated API call hooking and simulation. Our
approach provides an API call trace of a shellcode in a few
milliseconds. We also present the results of a large empirical
analysis of malicious PDFs collected in the wild over the last
few years. To our surprise, we found that 90% of shellcode
embedded in documents make no use of machine-code level
polymorphism, in stark contrast to prior shellcode studies
based on samples collected from network-service level at-
tacks. We also observed a heavy-tailed distribution of API
call sequences used by contemporary shellcode.

Categories and Subject Descriptors K.6.5 [Security and
Protection]: Invasive Software

General Terms Forensics, Security, Measurements

Keywords Shellcode, Malicious Code, Hooking

1. Introduction
Dynamic code analysis has been proposed as an effective
means for detecting the presence of shellcode in an arbi-
trary buffer of data [2, 10, 11, 14]. The general idea is to
treat a buffer of data as code and simply execute its con-
tents in a controlled environment, starting at each offset in
the buffer (called an execution chain). The basic premise is
that if the buffer contains only benign data, then the execu-
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tion would likely terminate with a fault. At that point, the ex-
ecution state is reset and an execution attempt is made from
the next position in the buffer, since a shellcode’s location,
if present, is not known a-priori. If, on the other hand, a par-
ticular execution chain within a buffer does in-fact represent
shellcode, the instruction sequence executed by that shell-
code will reliably generate tell-tale signs of malicious code.
One of these tell-tale signs, for example, is accesses to spe-
cific fields within the Thread Environment Block (TEB) and
Process Environment Block (PEB) to parse Windows API
call address locations. Several profiles of these code execu-
tion sequences (called runtime heuristics) have been devel-
oped in the last few years [9–11, 13]. In this paper, we use
a state-of-the-art dynamic code analysis framework called
ShellOS [14] to find and analyze shellcode in document-
based code injection attacks.

While dynamic code analysis has primarily been used to
detect shellcode at the network packet level [11, 12], re-
cent work has explored the application to document-based
code injection attacks [14, 17] (also called malcode-bearing
documents [7]). However, scanning documents for shell-
code using dynamic code analysis creates an additional layer
of complexity in that most document-based code injection
attacks store shellcode under one or more layers of com-
pression or encoding. These malicious documents often rely
on the document reader itself to decompress the shellcode
through its document parsing routines, or rely on the docu-
ment reader to provide a means to dynamically decompress
or decode shellcode through built-in scripting facilities (e.g.
ActionScript, JavaScript, etc.).

Two general approaches have been proposed for automat-
ically decompressing and decoding buffers in a document
that may contain shellcode – document parsing [3, 6, 17],
and document snapshotting [1, 14]). Document parsing at-
tempts to manually implement lightweight document reader
parsing routines and provide an environment for scripting
languages to execute within. The primary difficulty with this
approach is simply keeping up-to-date with all the features
and nuances of a particular file format. Parsing does, how-
ever, have the advantage of precision control and greater



introspection of the decompression and/or decode routines.
Document snapshotting, on the other hand, simply opens a
document in its reader application and takes a snapshot of
application memory after it has loaded. We use a document
snapshotting approach.

Beyond merely detecting shellcode and tracing the in-
structions executed using dynamic code analysis, the se-
quence of Windows API calls executed by shellcode, along
with their parameters, are particularly useful to a network
operator. A network operator could, for example, blacklist
URLs found in shellcode, compare those URLs with net-
work traffic to determine if a machine was actually compro-
mised, or provide information to their forensic team such as
the location of malicious binaries on the file system. While
the ShellOS framework provides state-of-the-art dynamic
code analysis for shellcode detection, the forensic and diag-
nostic capabilities for tracing Windows API calls are lim-
ited to a small set of handcrafted functions. Indeed, once de-
ployed in the wild, we routinely encountered new API calls
used by shellcode. We present an approach for analyzing
previously unseen API sequences, and show that this exten-
sion significantly improved our diagnostic capabilities.

2. API Call Diagnostics
Over the past several years, dynamic code analysis has
proven to be an effective weapon in the fight against code in-
jection attacks. However, allowing shellcode (once detected)
to continue its execution and properly handle its sequence
of Windows API calls is a difficult task for dynamic code
analyzers, mainly due to the fact that the code runs in a sim-
ulated Windows environment. The libemu dynamic code
analyzer, for example, loads a fixed set of DLLs to their de-
fault load addresses in memory and maintains a static list
of Windows API call addresses that it simulates when the
API address is loaded from within the instruction emulator.
ShellOS takes a similar approach to libemu in that it
simulates a fixed set API calls, but differs in that API calls
are hooked by page-level memory traps (see the discussion
in [14] or the notion of stealth breakpoints in [18] for a de-
tailed overview), rather than comparing the PC to the set of
simulated API call addresses at each single-stepped instruc-
tion. However, the fact remains that dynamic code analy-
sis tools cannot easily support the simulation of the myriad
of Windows API calls available, and additional third-party
DLLs are often loaded by the application being analyzed. It
is not uncommon, for example, that over 30,000 DLL func-
tions are present in memory at any time.

As an alternative to dynamic code analysis, we note
that that simply executing the document reader applica-
tion (given the malicious document) inside Windows, all the
while tracing API calls, may be the most straightforward ap-
proach. In fact, this is exactly what tools like CWSandbox
[19] do. Instead of detecting shellcode, these tools are based
on detecting anomalies in API, system, and network traces.

Unfortunately, many shellcode have adapted to evade API
hooking techniques (called in-line code overwriting) used
by tools like CWSandbox by simply jumping a few bytes
into API calls. Furthermore, the resulting traces make it ex-
ceedingly difficult to separate application-generated events
from shellcode-generated events.

Fratantonio et al. [4] offer an alternative called Shellzer
that focuses solely on recovering the Windows API call se-
quence of a given shellcode that has already been discovered
and extracted by other means (e.g. using wepawet [3]). The
approach they take is to compile the given shellcode into a
standard Windows binary, then execute it in debug mode and
single-step instructions until the PC jumps to an address in
DLL-space. The API call is logged if the address is found in
an external configuration file. The advantage here over typi-
cal dynamic code analysis is that Shellzer executes code
in a real Windows OS environment allowing actual API calls
and their associated kernel-level calls to complete. However,
this comes at a price — obviously the analysis must be run in
Windows, the instruction single-stepping results in sub-par
performance (∼15 second average analysis time), and well-
known malware anti-debugging tricks can be used to evade
detection and possibly compromise the OS.

To alleviate some of these problems, we developed a
technique for automatically hooking all methods exported by
DLLs, without the use of external DLL configuration files.
We also provide a method for automatically generating code
to simulate each API call, where possible.

2.1 Automated Hooking

To tackle the problem of automatically hooking the tens
of thousands of exported DLL functions found in a typi-
cal Windows application, we leverage ShellOS memory
traps along with the application snapshot that accompanies
an analysis with ShellOS. As described in detail in [14],
ShellOS initializes its execution environment by exactly
reconstructing the virtual memory layout and content of an
actual Windows application through an application snapshot.
These application snapshots, called minidumps, are created
through the Windows DbgHelp API and may be configured
to extract the entire process state, including the code seg-
ments of DLLs1.

The minidump provides ShellOS with the list of mem-
ory regions that correspond to DLLs. We use this informa-
tion to set memory traps (a hardware supported page-level
mechanism) on the entirety of each DLL region. These traps
guarantee that any execution transfer to DLL-space is im-
mediately caught by ShellOS, without any requirement
of single-stepping each instruction to check the PC address.
Once caught, we parse the export tables of each DLL loaded
by the application snapshot to try and match the address that
triggered the trap to one of the tens of thousands of DLL

1 http://msdn.microsoft.com/en-us/library/windows/
desktop/ms679309(v=vs.85).aspx



functions. If the address does not match an exact API call ad-
dress, we simply note the relation to the nearest API call en-
try point found≤ the trapped address in the format: function
+ offset. In this way, we discover either the exact function
called, or the offset into a specific function that was called.
In cases where we already have a handler to simulate the API
call, it may be called.

2.2 Automated Simulation

Automated hooking alone can only reveal the last function
that malicious code tried to call before our diagnostic analy-
sis failed. This certainly helps with rapidly prototyping new
API calls. However, we want to automatically support the
simulation of new API calls to prevent, where possible, con-
stantly updating ShellOS manually.

One approach is to skip simulation altogether, for exam-
ple, by simply allowing the API call code to execute as it
normally would. Since ShellOS already maps the full pro-
cess snapshot into memory, all the necessary DLL code is
already present. Unfortunately, Windows API calls typically
make use of kernel-level system calls. To support this with-
out analyzing the shellcode in a real Windows environment
would require simulating all of the Windows system calls –
a non-trivial task.

Instead we generate a best-effort automated simulation
of an API call on-the-fly. The idea is to simply return what
is considered a valid result to the caller2. Since shellcode
does not often make use of extensive error checking, this
technique enables analysis of shellcode using API calls not
known a-priori to run to completion. The main complica-
tion with this approach, however, is the assembly-level func-
tion calling convention used by Windows API calls (the
stdcall convention). The convention declares that the

API call, not the caller, must clean up the function param-
eters pushed on the stack by the caller. Therefore, we can-
not simply return to the calling instruction, which would
result in a corrupted stack. Instead, we need to determine
the size of the parameters pushed onto the stack for that
specific function call. Unfortunately, this function parame-
ter information is not readily available in any form within an
application snapshot3. However, the original DLL code for
the function is accessible within the application snapshot,
and this code must clean up the stack before returning. We
leverage this by disassembling instructions, starting at the
trapped address, until we encounter a ret instruction. The
ret instruction optionally takes a 2-byte source operand
that specifies the number of bytes to pop off the stack. We
use this information to automatically adjust the stack, allow-
ing shellcode to continue its execution. Obviously, the auto-
mated simulation would fail to work in cases where shell-

2 Windows API functions place their return value in the eax register, and
in most cases indicate a success with a value ≥ 1
3 Function parameter information could be obtained from external sources,
such as library definitions or debug symbols, but these may be impossible
to obtain for proprietary third-party DLLs

code actually requires an intelligent result (e.g. LoadLibrary
must return a valid DLL load address). An astute attacker
could therefore thwart diagnostic analysis by requiring spe-
cific results from one of these automatically simulated API
calls. Our automated API hooking, however, would at least
identify the offending API call.

For cases where shellcode attempts to bypass in-line code
overwriting-based function hooking by jumping a few bytes
into an API call, we simply adjust the stack accordingly (as
also noted by [4]), and either call the manually implemented
function handler (if it exists), or do on-the-fly automated
simulation as described above.

3. Malicious Document Analysis
In what follows, we perform an indepth forensic analysis
of the document based code injection attacks. We use our
dynamic code analysis capabilities to exactly pinpoint no-
op sleds and shellcode for analysis, and then examine the
structure of Windows API call sequences, as well as the
overall behavior of the code injected into the document.
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Figure 1. Timeline of PDFs used in our analysis.

Our forensic analysis is based on nearly 10,000 distinct
PDF documents collected from the wild and provided to us
through several sources. Many of these were submitted di-
rectly to a submission server (running the ShellOS frame-
work) available on our campus. All the documents used in
this analysis had previously been labeled as malicious, so
our subsequent analysis focuses on what we can learn about
the malicious code, rather than whether the document is ma-
licious or not; the detection capabilities of ShellOS is al-
ready covered in [14].

To get a sense of how varied these documents were (e.g.,
whether they come from different campaigns, use differ-
ent exploits, use different obfuscation techniques, etc.), we
performed a preliminary analysis using jsunpack [5] and
VirusTotal4. Figure 1 shows that the set of PDFs spans
from 2008, shortly after the first emergence of malicious
PDF documents in 2007, up to July of 2011, with about half
of the data set from more recent months in 2011. Only 16 of
these documents were unknown to VirusTotal when our
queries were submitted in January of 2012.

4 http://www.virustotal.com



100   10 20 30 40 50 60 70 80 90

.

0

CVE-2009-4324

CVE-2009-1493

CVE-2009-1492

CVE-2009-0927

CVE-2008-2992

CVE-2007-5659

% of PDFs with Matching Signature (as reported by jsunpack)

72%

18.6%

18.4%

54.6%

0.26%

5.4%

(a) Vulnerabilities

   0 10 20 30 40 50 60 70 80 90 100

   

   

1

2

3

4

5

Percentage of our Data Set

# 
of

 E
xp

lo
its

 in
 a

 S
in

gl
e 

PD
F

19.59%

63.43%

12.73%

3.92%

0.31%

(b) No. of Exploits

Figure 2. Results from jsunpack showing (a) known vulnerabilities and (b) exploits per PDF

Figure 2(a) shows the Common Vulnerabilities and Ex-
posure (CVE) identifiers, as reported by jsunpack. The
CVEs reported are, of course, only for those documents that
jsunpack could successfully unpack and match signatures
to the unpacked Javascript. The percentages here do not sum
to 100% because most documents contain more than one ex-
ploit. Of the successfully labelled documents, 72% of them
contain the original exploit that fueled the rise of malicious
PDFs in 2007 — namely, the collab.collectEmail exploit
(CVE-2007-5659). As can be seen in Figure 2(b), most of
the documents contained more than one exploit, with the
second most popular exploit, getAnnots (CVE-2009-1492),
appearing in 54.6% of the documents.

3.1 Results

Shellcode Polymorphism Polymorphism has long been
used to uniquely obfuscate each instance of a shellcode to
evade detection by anti-virus signatures [15, 16]. A poly-
morphic shellcode typically contains a few decoder instruc-
tions, followed by the encoded portion of the shellcode.
The decoder code typically loops over the encoded portion,
xor’ing it with a unique key, then jumps to the decoded
shellcode. A typical decoder loop might like:

begin snippet

call 0xfffffff1 ; GetPC setup
pop ebx ; GetPC in ebx register
xor ecx,ecx ; Clear counter register
mov cx,0x180 ; Loop count = payload size
...
xor byte [ebx],0xef ; Xor key with a payload byte
inc ebx ; Move to the next byte
loop 0xfffffffc ; counter--, repeat until 0
...
xor byte [ebx],0xef ; Decode next position
inc ebx ;
loop 0xfffffffc ;
... ; And so on...

end snippet

Our approach to analyzing polymorphism is to trace the
execution of the first n instructions in each shellcode (we
use n = 50 in our evaluation). In these n instructions, we

can observe either a decode loop, or the immediate execution
of non-polymorphic shellcode. ShellOS detects shellcode by
executing from each position in a buffer, then triggering on
a heuristic (such as the PEB heuristic [13]). However, since
shellcode is often prepended by a no-op sled, tracing the first
n instructions would usually only include execution of those
sled instructions. Therefore, to isolate the no-op sled and ac-
tual shellcode portions of injected code, we execute each de-
tected shellcode several times. The first execution simply de-
tects the presence of shellcode and indicates the buffer off-
set of both the execution start position (e.g., most likely the
start of the no-op sled) and the offset of the instruction where
the heuristic was triggered (e.g., at some location inside the
shellcode itself). We then try executing the buffer multiple
times, starting at the offset the heuristic was originally trig-
gered at and moving backwards until the heuristic success-
fully triggers again (of course, resetting the state after each
execution). This new offset indicates the first instruction re-
quired by the shellcode to properly function, and we begin
our n instruction trace from here.
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Figure 3. Unique sequences observed. 93% of shellcode
use 1 of the top 10 unique starting sequences observed.

Figure 3 shows the number of shellcode found in each
of the 220 unique starting sequences traced. Uniqueness, in
this case is rather strict, and is determined by exactly match-
ing instruction sequences (including opcodes). Notice the
heavy-tailed distribution. Upon examining the actual instruc-



tion sequences in the tail, we found that the vast majority of
these were indeed the same instruction sequence, but with
varying opcode values, which is indicative of polymorphism.
After re-binning the unique sequences by ignoring the op-
code values, the distribution remains similar to that shown
in Figure 3, but with only 108 unique starting sequences.

To our surprise, however, 90% of shellcode we analyzed
were completely non-polymorphic. This is in stark contrast
to prior empirical studies of shellcode [8, 12, 20]. One plau-
sible explanation of this difference may be that prior studies
examined shellcode-on-the-wire (e.g. network service-level
exploits). Network-level exploits typically operate in plain-
view of intrusion detection systems and therefore require ob-
fuscation of the shellcode itself. Document-based exploits,
such as those in our data set, have the benefit of using the
document format itself (e.g. object compression) to obfus-
cate the shellcode, or the ability to pack the shellcode at the
Javascript-level rather than machine code-level.

The 10% of shellcode that are actually polymorphic rep-
resent most of the heavy tail in Figure 3. Of the shellcode
in this set, 11% used the fstenv GetPC instruction. The
remaining 89% used call as their GetPC instruction. Of
the non-polymorphic sequences, 99.6% begin by looking
up the address of the TEB with no attempt to obfuscate
their actions. Only 7 shellcode try to be evasive in their
TEB lookup; they first push the TEB offset to the stack,
then pop it into a register via: push byte 0x30; pop
ecx; mov eax,fs:[ecx].

Shellcode API Calls. To test the effectiveness of our au-
tomatic API call hooking and simulation, we allowed each
shellcode in our data set to continue executing in ShellOS.
The average analysis time, per shellcode API sequence
traced, is ∼ 2 milliseconds. Overall, the automatic hooking
identified a number of API calls that were originally unhan-
dled. In those cases the shellcode would crash. The new di-
agnostic extensions now enable the shellcode to complete its
sequence of API calls, for example: LoadLibraryA Õ Get-
ProcAddress Õ URLDownloadToFile Õ [FreeLibrary+0]
Õ WinExec Õ ExitProcess. In this example, FreeLibrary
is an API call that the ShellOS framework had no prior
knowledge of how to handle. The automatic API hooking
discovered the function name and that the function was di-
rectly called by shellcode, hence the +0 offset. Next, the
automatic simulation disassembled the API code to find a
ret, adjusted the stack appropriately, and set a valid return
value. Our new API hooking techniques also identified a
number of shellcode that attempt to bypass function hooks
by jumping a few bytes into the API entry point. We found
that the shellcode that make use of this technique usually
only apply it to a small subset of their API calls. We ob-
served hook bypassing for the following functions: Virtu-
alProtect, CreateFileA, LoadLibraryA, and WinExec. In the
following API call sequence, we automatically identified

and handled hook bypassing in 2 API calls: GetFileSize5

Õ GetTickCount Õ ReadFile Õ GetTickCount Õ GlobalAl-
loc Õ GetTempPathA Õ SetCurrentDirectoryA Õ [Create-
FileA+5] Õ GlobalAlloc Õ ReadFile Õ WriteFile Õ Close-
Handle Õ [WinExec+5] Õ ExitProcess. In this case, the
stacks were automatically adjusted to account for the +5
jump into the CreateFileA and WinExec API calls. After the
stack adjustment, the API calls are handled as usual.

Typically, an exploit will crash or silently terminate an
exploited application. However, we observed more sophis-
ticated shellcode that makes an effort to mask the fact that
an exploit has occurred on the end-user’s machine. Several
API call sequences first load a secondary payload from the
original document: GetFileSize Õ VirtualAlloc Õ GetTick-
Count Õ ReadFile. Then, assembly-level code decodes the
payload (typically xor-based), and transfers control to the
second payload, which goes through another round of de-
coding itself. The secondary payload then drops two files
extracted from the original document to disk – an executable
and a PDF: GetTempPathA Õ GetTempFileNameA Õ Cre-
ateFileA Õ [LocalAlloc+0] Õ WriteFile Õ CloseHandle
Õ WinExec Õ CreateFileA Õ WriteFile Õ CloseHandle Õ
CloseHandle Õ [GetModuleFileNameA+0] Õ WinExec Õ
ExitProcess. The malicious executable is launched in the
background, while the benign PDF is launched in the fore-
ground via ’cmd.exe /c start’.

Overall, we found over 50 other unique sequences of
API calls in our data set. Due to space constraints, Table 1
only shows the full API call sequences for the most frequent
shellcode. As with our observations of the first n assembly-
level shellcode instructions, the call sequences have a heavy-
tailed distribution.

4. Conclusions
As code-injection attacks have solidified their position in the
new frontier of rich-media client applications, such as docu-
ment readers and web browsers, diagnosing the initial code
injected by an exploit becomes more critical to understand-
ing what transpired after an exploit. The automatic hooking
and simulation techniques presented in this paper greatly
aid in the analysis of both known and unknown shellcode.
Our empirical analysis shows that the properties of network-
service level exploits and their associated shellcode, such
as polymorphism, do not necessarily translate to document-
based code-injection attacks. Additionally, our API call se-
quence analysis has revealed diversity in todays shellcode,
likely due to the multitude of exploit kits available — fur-
ther underscoring the usefulness of the improved shellcode
diagnostics presented.

5 A custom handler is required for GetFileSize and ReadFile. Our handler
reads the original document file to provide the correct file size and contents
to the shellcode.



Table 1. Shellcode API Call Sequences
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